Microchip

dsPIC30F2010 Data Sheet

High-Performance, 16-Bit Digital Signal Controllers

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV
 ISO/TS 16949:2002

dsPIC30F2010

28-Pin dsPIC30F2010 Enhanced Flash 16-Bit Digital Signal Controller

> Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F/ 33F Programmer's Reference Manual"(DS70157).

High-Performance Modified RISC CPU:

- Modified Harvard architecture
- C compiler optimized instruction set architecture
- 83 base instructions with flexible addressing modes
- 24 -bit wide instructions, 16 -bit wide data path
- 12 Kbytes on-chip Flash program space
- 512 bytes on-chip data RAM
- 1 Kbyte nonvolatile data EEPROM
- 16×16-bit working register array
- Up to 30 MIPs operation:
- DC to 40 MHz external clock input
- $4 \mathrm{MHz}-10 \mathrm{MHz}$ oscillator input with PLL active (4x, 8x, 16x)
- 27 interrupt sources
- Three external interrupt sources
- 8 user-selectable priority levels for each interrupt
- 4 processor exceptions and software traps

DSP Engine Features:

- Modulo and Bit-Reversed modes
- Two 40 -bit wide accumulators with optional saturation logic
- 17-bit x 17-bit single-cycle hardware fractional/ integer multiplier
- Single-cycle Multiply-Accumulate (MAC) operation
- 40-stage Barrel Shifter
- Dual data fetch

Peripheral Features:

- High current sink/source I/O pins: $25 \mathrm{~mA} / 25 \mathrm{~mA}$
- Three 16-bit timers/counters; optionally pair up 16-bit timers into 32-bit timer modules
- Four 16 -bit capture input functions
- Two 16-bit compare/PWM output functions
- Dual Compare mode available
- 3-wire SPI modules (supports 4 Frame modes)
- $\mathrm{I}^{2} \mathrm{C}^{\text {TM }}$ module supports Multi-Master/Slave mode and 7-bit/10-bit addressing
- Addressable UART modules with FIFO buffers

Motor Control PWM Module Features:

- 6 PWM output channels
- Complementary or Independent Output modes
- Edge and Center-Aligned modes
- 4 duty cycle generators
- Dedicated time base with 4 modes
- Programmable output polarity
- Dead-time control for Complementary mode
- Manual output control
- Trigger for synchronized A/D conversions

Quadrature Encoder Interface Module Features:

- Phase A, Phase B and Index Pulse input
- 16-bit up/down position counter
- Count direction status
- Position Measurement (x2 and x4) mode
- Programmable digital noise filters on inputs
- Alternate 16-bit Timer/Counter mode
- Interrupt on position counter rollover/underflow

Analog Features:

- 10-bit Analog-to-Digital Converter (ADC) with:
- 1 Msps (for 10 -bit A/D) conversion rate
- Six input channels
- Conversion available during Sleep and Idle
- Programmable Brown-out Reset

dsPIC30F2010

Special Digital Signal Controller Features:

- Enhanced Flash program memory:
- 10,000 erase/write cycle (min.) for industrial temperature range, 100K (typical)
- Data EEPROM memory:
- 100,000 erase/write cycle (min.) for industrial temperature range, 1M (typical)
- Self-reprogrammable under software control
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Flexible Watchdog Timer (WDT) with on-chip lowpower RC oscillator for reliable operation
- Fail-Safe clock monitor operation
- Detects clock failure and switches to on-chip lowpower RC oscillator
- Programmable code protection
- In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) programming capability
- Selectable Power Management modes
- Sleep, Idle and Alternate Clock modes

CMOS Technology:

- Low-power, high-speed Flash technology
- Wide operating voltage range (2.5V to 5.5 V)
- Industrial and Extended temperature ranges
- Low power consumption

dsPIC30F Motor Control and Power Conversion Family*

Device	Pins	Program Mem. Bytes/ Instructions	SRAM Bytes	EEPROM Bytes	$\begin{aligned} & \text { Timer } \\ & \text { 16-bit } \end{aligned}$	Input Cap	Output Comp/Std PWM	Motor Control PWM	A/D 10-bit 1 Msps	Quad Enc	$\stackrel{\leftarrow}{\frac{1}{4}}$	-	$\begin{aligned} & \sum_{1} \\ & \end{aligned}$	Z
dsPIC30F2010	28	12K/4K	512	1024	3	4	2	6 ch	6 ch	Yes	1	1	1	-
dsPIC30F3010	28	24K/8K	1024	1024	5	4	2	6 ch	6 ch	Yes	1	1	1	-
dsPIC30F4012	28	48K/16K	2048	1024	5	4	2	6 ch	6 ch	Yes	1	1	1	1
dsPIC30F3011	40/44	24K/8K	1024	1024	5	4	4	6 ch	9 ch	Yes	2	1	1	-
dsPIC30F4011	40/44	48K/16K	2048	1024	5	4	4	6 ch	9 ch	Yes	2	1	1	1
dsPIC30F5015	64	66K/22K	2048	1024	5	4	4	8 ch	16 ch	Yes	1	2	1	1
dsPIC30F6010	80	144K/48K	8192	4096	5	8	8	8 ch	16 ch	Yes	2	2	1	2
dsPIC30F6010A	80	144K/48K	8192	4096	5	8	8	8 ch	16 ch	Yes	2	2	1	2

* This table provides a summary of the dsPIC30F2010 peripheral features. Other available devices in the dsPIC30F Motor Control and Power Conversion Family are shown for feature comparison.

Pin Diagrams

28-Pin SDIP and SOIC

28-Pin QFN

dsPIC30F2010

Table of Contents
1.0 Device Overview 5
2.0 CPU Architecture Overview 9
3.0 Memory Organization 19
4.0 Address Generator Units 31
5.0 Interrupts 37
6.0 Flash Program Memory 43
7.0 Data EEPROM Memory 49
8.0 I/O Ports 53
9.0 Timer1 Module 57
10.0 Timer2/3 Module 61
11.0 Input Capture Module 67
12.0 Output Compare Module 71
13.0 Quadrature Encoder Interface (QEI) Module 75
14.0 Motor Control PWM Module 81
15.0 SPI Module 91
16.0 I2C Module 95
17.0 Universal Asynchronous Receiver Transmitter (UART) Module 103
18.0 10-bit High-Speed Analog-to-Digital Converter (ADC) Module 111
19.0 System Integration 123
20.0 Instruction Set Summary 137
21.0 Development Support 145
22.0 Electrical Characteristics 149
23.0 Packaging Information 187
The Microchip Web Site 199
Customer Change Notification Service 199
Customer Support 199
Reader Response 200
Product Identification System 201

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

dsPIC30F2010

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F/ 33F Programmer's Reference Manual" (DS70157).

This document contains device specific information for the dsPIC30F2010 device. The dsPIC30F devices contain extensive Digital Signal Processor (DSP) functionality within a high-performance 16-bit microcontroller (MCU) architecture. Figure 1-1 shows a device block diagram for the dsPIC30F2010 device.

dsPIC30F2010

FIGURE 1-1: dsPIC30F2010 BLOCK DIAGRAM

Table 1-1 provides a brief description of device I/O pinouts and the functions that may be multiplexed to a port pin. Multiple functions may exist on one port pin. When multiplexing occurs, the peripheral module's functional requirements may force an override of the data direction of the port pin.

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Pin Name	Pin Type	Buffer Type	Description
AN0-AN5	I	Analog	Analog input channels.
AVDD	P	P	Positive supply for analog module.
AVss	P	P	Ground reference for analog module.
$\begin{aligned} & \text { CLKI } \\ & \text { CLKO } \end{aligned}$	$\begin{aligned} & \text { I } \\ & 0 \end{aligned}$	ST/CMOS	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
CNO-CN7	1	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
EMUD EMUC EMUD1 EMUC1 EMUD2 EMUC2 EMUD3 EMUC3	$\begin{aligned} & 1 / O \\ & 1 / O \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { ST } \end{aligned}$	ICD Primary Communication Channel data input/output pin. ICD Primary Communication Channel clock input/output pin. ICD Secondary Communication Channel data input/output pin. ICD Secondary Communication Channel clock input/output pin. ICD Tertiary Communication Channel data input/output pin. ICD Tertiary Communication Channel clock input/output pin. ICD Quaternary Communication Channel data input/output pin. ICD Quaternary Communication Channel clock input/output pin.
$\begin{aligned} & \text { IC1, IC2, IC7, } \\ & \text { IC8 } \end{aligned}$	I	ST	Capture inputs. The dsPIC30F2010 has 4 capture inputs. The inputs are numbered for consistency with the inputs on larger device variants.
$\begin{aligned} & \text { INDX } \\ & \text { QEA } \\ & \\ & \text { QEB } \end{aligned}$	$\begin{aligned} & \hline \text { I } \\ & \text { I } \end{aligned}$	$\begin{aligned} & \hline \text { ST } \\ & \text { ST } \\ & \\ & \text { ST } \end{aligned}$	Quadrature Encoder Index Pulse input. Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode. Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode.
$\begin{aligned} & \hline \text { INT0 } \\ & \text { INT1 } \\ & \text { INT2 } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { I } \end{aligned}$	$\begin{aligned} & \hline \text { ST } \\ & \text { ST } \\ & \text { ST } \\ & \hline \end{aligned}$	External interrupt 0 External interrupt 1 External interrupt 2
	$\begin{aligned} & \hline 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	ST - - -	PWM Fault A input PWM 1 Low output PWM 1 High output PWM 2 Low output PWM 2 High output PWM 3 Low output PWM 3 High output
$\overline{\mathrm{MCLR}}$	I/P	ST	Master Clear (Reset) input or programming voltage input. This pin is an activelow Reset to the device.
$\begin{aligned} & \text { OCFA } \\ & \text { OC1-OC2 } \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	ST	Compare Fault A input (for Compare channels 1, 2, 3 and 4). Compare outputs.
OSC1	1 1/O	ST/CMOS -	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.

Legend: $\mathrm{CMOS}=\mathrm{CMOS}$ compatible input or output

ST	$=$ Schmitt Trigger input with CMOS levels
I	$=$ Input

I = Input

Analog = Analog input

dsPIC30F2010

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
$\begin{aligned} & \mathrm{PGD} \\ & \text { PGC } \end{aligned}$	$\begin{gathered} 1 / \mathrm{O} \\ \mathrm{I} \end{gathered}$	$\begin{aligned} & \hline \text { ST } \\ & \text { ST } \end{aligned}$	In-Circuit Serial Programming ${ }^{\text {TM }}$ data input/output pin. In-Circuit Serial Programming clock input pin.
RB0-RB5	I/O	ST	PORTB is a bidirectional I/O port.
RC13-RC14	1/O	ST	PORTC is a bidirectional I/O port.
RD0-RD1	I/O	ST	PORTD is a bidirectional I/O port.
$\begin{aligned} & \hline \text { RE0-RE5, } \\ & \text { RE8 } \end{aligned}$	I/O	ST	PORTE is a bidirectional I/O port.
RF2, RF3	I/O	ST	PORTF is a bidirectional I/O port.
$\begin{aligned} & \text { SCK1 } \\ & \text { SDI1 } \\ & \frac{\text { SDO1 }}{\text { SS1 }} \end{aligned}$	$\begin{gathered} \hline \mathrm{I} \mathrm{O} \\ \mathrm{I} \\ \mathrm{O} \\ \mathrm{I} \end{gathered}$	$\begin{aligned} & \hline \text { ST } \\ & \text { ST } \\ & \hline \text { ST } \end{aligned}$	Synchronous serial clock input/output for SPI \#1. SPI \#1 Data In. SPI \#1 Data Out. SPI \#1 Slave Synchronization.
$\begin{aligned} & \mathrm{SCL} \\ & \mathrm{SDA} \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { ST } \end{aligned}$	Synchronous serial clock input/output for $I^{2} \mathrm{C}^{\text {TM }}$. Synchronous serial data input/output for $I^{2} \mathrm{C}$.
$\begin{aligned} & \text { SOSCO } \\ & \text { SOSCI } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{I} \end{aligned}$	ST/CMOS	32 kHz low-power oscillator crystal output. 32 kHz low-power oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
$\begin{aligned} & \hline \text { T1CK } \\ & \text { T2CK } \end{aligned}$	I	$\begin{aligned} & \hline \text { ST } \\ & \text { ST } \end{aligned}$	Timer1 external clock input. Timer2 external clock input.
U1RX U1TX U1ARX U1ATX	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{\mathrm{ST}}{-}+\frac{\mathrm{ST}}{-} \end{aligned}$	UART1 Receive. UART1 Transmit. UART1 Alternate Receive. UART1 Alternate Transmit.
Vdd	P	-	Positive supply for logic and I/O pins.
Vss	P	-	Ground reference for logic and I/O pins.
VREF+	1	Analog	Analog Voltage Reference (High) input.
Vref-	1	Analog	Analog Voltage Reference (Low) input.
Legend: CMOS $=$ CMOS compatible input or output Analog = Analog input			

2.0 CPU ARCHITECTURE OVERVIEW

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F/ 33F Programmer's Reference Manual" (DS70157).

This document provides a summary of the dsPIC30F2010 CPU and peripheral function. For a complete description of this functionality, please refer to the "dsPIC30F Family Reference Manual" (DS70046).

2.1 Core Overview

The core has a 24 -bit instruction word. The Program Counter (PC) is 23 bits wide with the Least Significant bit (LSb) always clear (see Section 3.1 "Program Address Space"), and the Most Significant bit (MSb) is ignored during normal program execution, except for certain specialized instructions. Thus, the PC can address up to 4 M instruction words of user program space. An instruction prefetch mechanism is used to help maintain throughput. Program loop constructs, free from loop count management overhead, are supported using the do and RePeat instructions, both of which are interruptible at any point.
The working register array consists of 16×16-bit registers, each of which can act as data, address or offset registers. One working register (W15) operates as a software Stack Pointer for interrupts and calls.
The data space is 64 Kbytes (32 K words) and is split into two blocks, referred to as X and Y data memory. Each block has its own independent Address Generation Unit (AGU). Most instructions operate solely through the X memory AGU, which provides the appearance of a single unified data space. The Multiply-Accumulate (MAC) class of dual source DSP instructions operate through both the X and Y AGUs, splitting the data address space into two parts (see Section 3.2 "Data Address Space"). The X and Y data space boundary is device specific and cannot be altered by the user. Each data word consists of 2 bytes, and most instructions can address data either as words or bytes.
There are two methods of accessing data stored in program memory:

- The upper 32 Kbytes of data space memory can be mapped into the lower half (user space) of program space at any 16 K program word boundary, defined by the 8 -bit Program Space Visibility Page (PSVPAG) register. This lets any instruction access program space as if it were data space, with a limitation that the access requires an additional cycle. Moreover, only the lower 16 bits of each instruction word can be accessed using this method.
- Linear indirect access of 32 K word pages within program space is also possible using any working register, via table read and write instructions. Table read and write instructions can be used to access all 24 bits of an instruction word.
Overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. This is primarily intended to remove the loop overhead for DSP algorithms.
The X AGU also supports Bit-Reversed Addressing on destination effective addresses, to greatly simplify input or output data reordering for radix-2 FFT algorithms. Refer to Section 4.0 "Address Generator Units" for details on Modulo and Bit-Reversed Addressing.
The core supports Inherent (no operand), Relative, Literal, Memory Direct, Register Direct, Register Indirect, Register Offset and Literal Offset Addressing modes. Instructions are associated with predefined Addressing modes, depending upon their functional requirements.
For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, 3-operand instructions are supported, allowing $\mathrm{C}=\mathrm{A}+\mathrm{B}$ operations to be executed in a single cycle.
A DSP engine has been included to significantly enhance the core arithmetic capability and throughput. It features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40 -bit bidirectional barrel shifter. Data in the accumulator or any working register can be shifted up to 15 bits right or 16 bits left in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC class of instructions can concurrently fetch two data operands from memory, while multiplying two W registers. To enable this concurrent fetching of data operands, the data space has been split for these instructions and linear for all others. This has been achieved in a transparent and flexible manner, by dedicating certain working registers to each address space for the MAC class of instructions.
The core does not support a multi-stage instruction pipeline. However, a single stage instruction prefetch mechanism is used, which accesses and partially decodes instructions a cycle ahead of execution, in order to maximize available execution time. Most instructions execute in a single cycle, with certain exceptions.
The core features a vectored exception processing structure for traps and interrupts, with 62 independent vectors. The exceptions consist of up to 8 traps (of which 4 are reserved) and 54 interrupts. Each interrupt is prioritized based on a user-assigned priority between 1 and 7 (1 being the lowest priority and 7 being the highest) in conjunction with a predetermined 'natural order'. Traps have fixed priorities, ranging from 8 to 15.

dsPIC30F2010

2.2 Programmer's Model

The programmer's model is shown in Figure 2-1 and consists of 16×16-bit working registers (W0 through W15), 2×40-bit accumulators (ACCA and ACCB), STATUS Register (SR), Data Table Page register (TBLPAG), Program Space Visibility Page register (PSVPAG), DO and REPEAT registers (DOSTART, DOEND, DCOUNT and RCOUNT) and Program Counter (PC). The working registers can act as data, address or offset registers. All registers are memory mapped. W0 acts as the W register for file register addressing.
Some of these registers have a shadow register associated with each of them, as shown in Figure 2-1. The shadow register is used as a temporary holding register and can transfer its contents to or from its host register upon the occurrence of an event. None of the shadow registers are accessible directly. The following rules apply for transfer of registers into and out of shadows.

- PUSH.S and POP.S

W0, W1, W2, W3, SR (DC, N, OV, Z and C bits only) are transferred.

- DO instruction

DOSTART, DOEND, DCOUNT shadows are pushed on loop start, and popped on loop end.
When a byte operation is performed on a working register, only the Least Significant Byte of the target register is affected. However, a benefit of memory mapped working registers is that both the Least and Most Significant Bytes can be manipulated through byte wide data memory space accesses.

2.2.1 SOFTWARE STACK POINTER/ FRAME POINTER

The dsPIC ${ }^{\circledR}$ DSC devices contain a software stack. W15 is the dedicated software Stack Pointer (SP), and will be automatically modified by exception processing and subroutine calls and returns. However, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies the reading, writing and manipulation of the Stack Pointer (e.g., creating stack frames).

Note: In order to protect against misaligned stack accesses, W15<0> is always clear.

W15 is initialized to 0×0800 during a Reset. The user may reprogram the SP during initialization to any location within data space.
W14 has been dedicated as a Stack Frame Pointer as defined by the LNK and ULNK instructions. However, W14 can be referenced by any instruction in the same manner as all other W registers.

2.2.2 STATUS REGISTER

The dsPIC DSC core has a 16-bit STATUS Register (SR), the LSB of which is referred to as the SR Low Byte (SRL) and the MSB as the SR High Byte (SRH). See Figure 2-1 for SR layout.
SRL contains all the MCU ALU operation status flags (including the Z bit), as well as the CPU Interrupt Priority Level status bits, IPL<2:0>, and the REPEAT active status bit, RA. During exception processing, SRL is concatenated with the MSB of the PC to form a complete word value which is then stacked.

The upper byte of the STATUS register contains the DSP adder/subtracter status bits, the DO Loop Active bit (DA) and the Digit Carry (DC) status bit.

2.2.3 PROGRAM COUNTER

The Program Counter is 23 bits wide. Bit 0 is always clear. Therefore, the PC can address up to 4 M instruction words.

dsPIC30F2010

FIGURE 2-1: PROGRAMMER'S MODEL

dsPIC30F2010

2.3 Divide Support

The dsPIC DSC devices feature a 16/16-bit signed fractional divide operation, as well as 32/16-bit and 16/ 16 -bit signed and unsigned integer divide operations, in the form of single instruction iterative divides. The following instructions and data sizes are supported:

1. DIVF $-16 / 16$ signed fractional divide
2. DIV. sd $-32 / 16$ signed divide
3. DIV. ud $-32 / 16$ unsigned divide
4. DIV. sw $-16 / 16$ signed divide
5. DIV. uw $-16 / 16$ unsigned divide

The 16/16 divides are similar to the 32/16 (same number of iterations), but the dividend is either zero-extended or sign-extended during the first iteration.

The divide instructions must be executed within a REPEAT loop. Any other form of execution (e.g. a series of discrete divide instructions) will not function correctly because the instruction flow depends on RCOUNT. The divide instruction does not automatically set up the RCOUNT value, and it must, therefore, be explicitly and correctly specified in the REPEAT instruction, as shown in Table 2-1 (REPEAT will execute the target instruction \{operand value +1$\}$ times). The REPEAT loop count must be set up for 18 iterations of the DIV/ DIVF instruction. Thus, a complete divide operation requires 19 cycles.

Note: The Divide flow is interruptible. However, the user needs to save the context as appropriate.

TABLE 2-1: DIVIDE INSTRUCTIONS

Instruction	Function
DIVF	Signed fractional divide: $\mathrm{Wm} / \mathrm{Wn} \rightarrow \mathrm{W0;} \mathrm{Rem} \rightarrow \mathrm{W} 1$
DIV.sd	Signed divide: $(\mathrm{Wm}+1: \mathrm{Wm}) / \mathrm{Wn} \rightarrow \mathrm{W0;} \mathrm{Rem} \rightarrow \mathrm{W} 1$
DIV.ud	Unsigned divide: $(\mathrm{Wm}+1: \mathrm{Wm}) / \mathrm{Wn} \rightarrow \mathrm{W0}$; Rem $\rightarrow \mathrm{W} 1$
DIV.sw (or DIV.s)	Signed divide: $\mathrm{Wm} / \mathrm{Wn} \rightarrow \mathrm{W} 0 ; \mathrm{Rem} \rightarrow \mathrm{W} 1$
DIV.uw (or DIV.u)	Unsigned divide: $\mathrm{Wm} / \mathrm{Wn} \rightarrow \mathrm{W} 0 ; \mathrm{Rem} \rightarrow \mathrm{W} 1$

dsPIC30F2010

2.4 DSP Engine

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a barrel shifter, and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).
The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations, which require no additional data. These instructions are ADD, sUB and NEG.

The DSP engine has various options selected through various bits in the CPU Core Configuration Register (CORCON), as listed below:

1. Fractional or integer DSP multiply (IF).
2. Signed or unsigned DSP multiply (US).
3. Conventional or convergent rounding (RND).
4. Automatic saturation on/off for ACCA (SATA).
5. Automatic saturation on/off for ACCB (SATB).
6. Automatic saturation on/off for writes to data memory (SATDW).
7. Accumulator Saturation mode selection (ACCSAT).
Note: For CORCON layout, see Table 3-3.
A block diagram of the DSP engine is shown in Figure 2-2.

TABLE 2-2: DSP INSTRUCTION SUMMARY

Instruction	Algebraic Operation	ACC WB?
CLR	$\mathrm{A}=0$	Yes
ED	$\mathrm{A}=(\mathrm{x}-\mathrm{y})^{2}$	No
EDAC	$\mathrm{A}=\mathrm{A}+(\mathrm{x}-\mathrm{y})^{2}$	No
MAC	$\mathrm{A}=\mathrm{A}+\left(\mathrm{x}^{*} \mathrm{y}\right)$	Yes
MAC	$\mathrm{A}=\mathrm{A}+\mathrm{x}^{2}$	No
MOVSAC	No change in A	Yes
MPY	$\mathrm{A}=x^{*} \mathrm{y}$	No
MPY.N	$\mathrm{A}=-x^{*} \mathrm{y}$	No
MSC	$A=A-x^{*} \mathrm{y}$	Yes

dsPIC30F2010

FIGURE 2-2:

dsPIC30F2010

2.4.1 MULTIPLIER

The 17×17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17x17-bit multiplier/ scaler is a 33 -bit value, which is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the MSB is defined as a sign bit. Generally speaking, the range of an N -bit two's complement integer is $-2^{\mathrm{N}-1}$ to $2^{\mathrm{N}-1}-1$. For a 16bit integer, the data range is $-32768(0 \times 8000)$ to 32767 ($0 \times 7 \mathrm{FFF}$), including 0 . For a 32-bit integer, the data range is $-2,147,483,648$ (0×80000000) to 2,147,483,645 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSB is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N -bit two's complement fraction with this implied radix point is -1.0 to $\left(1-2^{1-\mathrm{N}}\right)$. For a 16-bit fraction, the Q15 data range is $-1.0(0 \times 8000)$ to 0.999969482 (0x7FFF), including ' 0 ' and has a precision of 3.01518×10^{-5}. In Fractional mode, a 16×16 multiply operation generates a 1.31 product, which has a precision of 4.65661×10^{-10}.
The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiplies.

The mUL instruction may be directed to use byte or word-sized operands. Byte operands will direct a 16 -bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

2.4.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter, prior to accumulation.

2.4.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side and either true or complement data into the other input. In the case of addition, the carry/borrow input is active high and the other input is true data (not complemented), whereas in the case of subtraction, the carry/borrow input is active low and the other input is complemented. The adder/subtracter generates overflow status bits SA/SB and OA/OB, which are latched and reflected in the STATUS Register.

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the overflow status bits described above, and the SATA/B (CORCON<7:6>) and ACCSAT (CORCON $<4>$) mode control bits to determine when and to what value to saturate.
Six STATUS register bits have been provided to support saturation and overflow; they are:

1. $\mathrm{OA}:$

ACCA overflowed into guard bits
2. $O B$:

ACCB overflowed into guard bits
3. $\mathrm{SA}:$ ACCA saturated (bit 31 overflow and saturation) or
ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)
4. SB :

ACCB saturated (bit 31 overflow and saturation) or
ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)
5. OAB:

Logical OR of OA and OB
6. SAB:

Logical OR of SA and SB
The $O A$ and $O B$ bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding overflow trap flag enable bit (OVATE, OVBTE) in the INTCON1 register (refer to Section 5.0 "Interrupts") is set. This allows the user to take immediate action, for example, to correct system gain.

dsPIC30F2010

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation, or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The overflow and saturation status bits can optionally be viewed in the Status Register (SR) as the logical OR of $O A$ and $O B$ (in bit $O A B$), and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic which typically uses both the accumulators.

The device supports three Saturation and Overflow modes.

1. Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFFF) or maximally negative 9.31 value (0×8000000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (e.g., gain calculations).
2. Bit 31 Overflow and Saturation:

When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF) or maximally negative 1.31 value (0×0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the $O A, O B$ or $O A B$ bits are never set).
3. Bit 39 Catastrophic Overflow

The bit 39 overflow status bit from the adder is used to set the SA or SB bit, which remain set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

2.4.2.2 Accumulator 'Write-Back'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

1. W13, Register Direct:

The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
2. [W13]+=2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

2.4.2.3 Round Logic

The round logic is a combinational block, which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word (Isw) is simply discarded.

Conventional rounding takes bit 15 of the accumulator, zero-extends it and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0×8000 and $0 \times F F F F$ (0×8000 included), ACCxH is incremented. If ACCxL is between 0×0000 and $0 x 7 F F F$, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value will tend to be biased slightly positive.
Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0×8000. If this is the case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined. If it is ' 1 ', ACCxH is incremented. If it is ' 0 ', ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme will remove any rounding bias that may accumulate.
The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC. R) version of the contents of the target accumulator to data memory, via the X bus (subject to data saturation, see Section 2.4.2.4 "Data
Space Write Saturation"). Note that for the MAC class of instructions, the accumulator write-back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

dsPIC30F2010

2.4.2.4 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space may also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16 -bit round adder. These are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.
If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly. For input data greater than $0 \times 007 F F F$, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0×8000. The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

2.4.3 BARREL SHIFTER

The barrel shifter is capable of performing up to 15 -bit arithmetic or logic right shifts, or up to 16 -bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value will shift the operand right. A negative value will shift the operand left. A value of 0 will not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts, and bit positions 0 to 15 for left shifts.

dsPIC30F2010

NOTES:

3.0 MEMORY ORGANIZATION

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F/33F Programmer's Reference Manual" (DS70157).

3.1 Program Address Space

The program address space is 4 M instruction words. It is addressable by a 24 -bit value from either the 23 -bit PC, table instruction Effective Address (EA), or data space EA, when program space is mapped into data space, as defined by Table 3-1. Note that the program space address is incremented by two between successive program words, in order to provide compatibility with data space addressing.
User program space access is restricted to the lower 4 M instruction word address range (0×000000 to 0×7 FFFFE), for all accesses other than TBLRD/TBLWT, which use TBLPAG<7> to determine user or configuration space access. In Table 3-1, Read/Write instructions, bit 23 allows access to the Device ID, the User ID and the Configuration bits. Otherwise, bit 23 is always clear.

Note: The address map shown in Figure 3-1 is conceptual, and the actual memory configuration may vary across individual devices depending on available memory.

FIGURE 3-1: PROGRAM SPACE MEMORY MAP FOR dsPIC30F2010

dsPIC30F2010

TABLE 3-1: PROGRAM SPACE ADDRESS CONSTRUCTION

Access Type	Access Space	Program Space Address				
		<23>	<22:16>	<15>	<14:1>	<0>
Instruction Access	User	0	PC<22:1>			0
TBLRD/TBLWT	$\begin{aligned} & \text { User } \\ & \text { (TBLPAG<7> = }) \end{aligned}$	TBLPAG<7:0>		Data EA <15:0>		
TBLRD/TBLWT	Configuration (TBLPAG<7> = 1)	TBLPAG<7:0>		Data EA < 15:0>		
Program Space Visibility	User	0	PSVPAG<7:0>		Data EA < 14:0>	

FIGURE 3-2: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

[^0]
dsPIC30F2010

3.1.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

This architecture fetches 24 -bit wide program memory. Consequently, instructions are always aligned. However, as the architecture is modified Harvard, data can also be present in program space.

There are two methods by which program space can be accessed: via special table instructions, or through the remapping of a 16 K word program space page into the upper half of data space (see Section 3.1.2 "Data Access from Program Memory Using Program Space Visibility"). The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the Isw of any address within program space, without going through data space. The TBLRDH and TBLWTH instructions are the only method whereby the upper 8 bits of a program space word can be accessed as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the Most Significant data Byte.
Figure 3-2 shows how the EA is created for table operations and data space accesses (PSV = 1). Here, $\mathrm{P}<23: 0>$ refers to a program space word, whereas $D<15: 0>$ refers to a data space word.

A set of Table Instructions are provided to move byte or word-sized data to and from program space.

1. TBLRDL: Table Read Low Word: Read the least significant word of the program address;
$\mathrm{P}<15: 0>$ maps to $\mathrm{D}<15: 0>$.
Byte: Read one of the LSBs of the program address;
$\mathrm{P}<7: 0>$ maps to the destination byte when byte select = 0;
$\mathrm{P}<15: 8>$ maps to the destination byte when byte select $=1$.
2. TBLWTL: Table Write Low (refer to Section 6.0 "Flash Program Memory" for details on Flash Programming).
3. tbledh : Table Read High Word: Read the most significant word of the program address;
$\mathrm{P}<23: 16>$ maps to $\mathrm{D}<7: 0>$; $\mathrm{D}<15: 8>$ always $\mathrm{be}=0$.
Byte: Read one of the MSBs of the program address;
$\mathrm{P}<23: 16>$ maps to the destination byte when byte select $=0$;
The destination byte will always be $=0$ when byte select $=1$.
4. tblwth : Table Write High (refer to Section 6.0 "Flash Program Memory" for details on Flash Programming).

FIGURE 3-3: PROGRAM DATA TABLE ACCESS (LEAST SIGNIFICANT WORD)

dsPIC30F2010

FIGURE 3-4: PROGRAM DATA TABLE ACCESS (MOST SIGNIFICANT BYTE)

3.1.2 DATA ACCESS FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16 K word program space page. This provides transparent access of stored constant data from X data space, without the need to use special instructions (i.e., TBLRDL/H, TBLWTL/H instructions).
Program space access through the data space occurs if the MSb of the data space EA is set and program space visibility is enabled, by setting the PSV bit in the Core Control register (CORCON). The functions of CORCON are discussed in Section 2.4 "DSP Engine", DSP Engine.
Data accesses to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Note that the upper half of addressable data space is always part of the X data space. Therefore, when a DSP operation uses program space mapping to access this memory region, Y data space should typically contain state (variable) data for DSP operations, whereas X data space should typically contain coefficient (constant) data.
Although each data space address, 0x8000 and higher, maps directly into a corresponding program memory address (see Figure 3-5), only the lower 16 -bits of the 24 -bit program word are used to contain the data. The upper 8 bits should be programmed to force an illegal instruction to maintain machine robustness. Refer to the "dsPIC30F/33F Programmer's Reference Manual" (DS70157) for details on instruction encoding.

Note that by incrementing the PC by 2 for each program memory word, the Least Significant 15 bits of data space addresses directly map to the Least Significant 15 bits in the corresponding program space addresses. The remaining bits are provided by the Program Space Visibility Page register, PSVPAG<7:0>, as shown in Figure 3-5.

Note: PSV access is temporarily disabled during table reads/writes.

For instructions that use PSV which are executed outside a REPEAT loop:

- The following instructions will require one instruction cycle in addition to the specified execution time:
- MAC class of instructions with data operand prefetch
- mOV instructions
- MOV.D instructions
- All other instructions will require two instruction cycles in addition to the specified execution time of the instruction.

For instructions that use PSV which are executed inside a REPEAT loop:

- The following instances will require two instruction cycles in addition to the specified execution time of the instruction:
- Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced
- Any other iteration of the REPEAT loop will allow the instruction, accessing data using PSV, to execute in a single cycle.

FIGURE 3-5: DATA SPACE WINDOW INTO PROGRAM SPACE OPERATION

Note: PSVPAG is an 8 -bit register, containing bits <22:15> of the program space address
(i.e., it defines the page in program space to which the upper half of data space is being mapped).

3.2 Data Address Space

The core has two data spaces. The data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths.

3.2.1 DATA SPACE MEMORY MAP

The data space memory is split into two blocks, X and Y data space. A key element of this architecture is that Y space is a subset of X space, and is fully contained within X space. In order to provide an apparent linear addressing space, X and Y spaces have contiguous addresses.

When executing any instruction other than one of the MAC class of instructions, the X block consists of the 256 byte data address space (including all Y addresses). When executing one of the MAC class of instructions, the X block consists of the 256 bytes data address space excluding the Y address block (for data reads only). In other words, all other instructions regard the entire data memory as one composite address space. The MAC class instructions extract the Y address space from data space and address it using EAs sourced from W10 and W11. The remaining X data space is addressed using W8 and W9. Both address spaces are concurrently accessed only with the MAC class instructions.
A data space memory map is shown in Figure 3-6.

dsPIC30F2010

FIGURE 3-6:
DATA SPACE MEMORY MAP

Note: Unimplemented SFR or SRAM locations read as ' 0 '.

dsPIC30F2010

FIGURE 3-7: DATA SPACE FOR MCU AND DSP (MAC CLASS) INSTRUCTIONS

Non-mAc Class Ops (Read/Write) mac Class Ops (Write)

Indirect EA using any W

mAC Class Ops Read-Only

Indirect EA using W8, W9 Indirect EA using W10, W11

dsPIC30F2010

3.2.2 DATA SPACES

The X data space is used by all instructions and supports all addressing modes. There are separate read and write data buses. The X read data bus is the return data path for all instructions that view data space as combined X and Y address space. It is also the X address space data path for the dual operand read instructions (MAC class). The X write data bus is the only write path to data space for all instructions.

The X data space also supports Modulo Addressing for all instructions, subject to addressing mode restrictions. Bit-Reversed addressing is only supported for writes to X data space.

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths. No writes occur across the Y bus. This class of instructions dedicates two W register pointers, W 10 and W 11 , to always address Y data space, independent of X data space, whereas W8 and W9 always address X data space. Note that during accumulator write-back, the data address space is considered a combination of X and Y data spaces, so the write occurs across the X bus. Consequently, the write can be to any address in the entire data space.
The Y data space can only be used for the data prefetch operation associated with the MAC class of instructions. It also supports Modulo Addressing for automated circular buffers. Of course, all other instructions can access the Y data address space through the X data path, as part of the composite linear space.

The boundary between the X and Y data spaces is defined as shown in Figure 3-6 and is not user programmable. Should an EA point to data outside its own assigned address space, or to a location outside physical memory, an all-zero word/byte will be returned. For example, although Y address space is visible by all non-MAC instructions using any Addressing mode, an attempt by a MAC instruction to fetch data from that space, using W8 or W9 (X space pointers), will return 0x0000.

TABLE 3-2: EFFECT OF INVALID MEMORY ACCESSES

Attempted Operation	Data Returned
EA = an unimplemented address	0×0000
W8 or W9 used to access Y data space in a MAC instruction	0×0000
W10 or W11 used to access X data space in a MAC instruction	0×0000

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes or 32 K words.

3.2.3 DATA SPACE WIDTH

The core data width is 16 bits. All internal registers are organized as 16 -bit wide words. Data space memory is organized in byte addressable, 16-bit wide blocks.

3.2.4 DATA ALIGNMENT

To help maintain backward compatibility with PIC ${ }^{\circledR}$ MCU devices and improve data space memory usage efficiency, the dsPIC30F instruction set supports both word and byte operations. Data is aligned in data memory and registers as words, but all data space EAs resolve to bytes. Data byte reads will read the complete word, which contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the X data path (no byte accesses are possible from the Y data path as the MAC class of instruction can only fetch words). That is, data memory and registers are organized as two parallel byte wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

As a consequence of this byte accessibility, all effective address calculations (including those generated by the DSP operations, which are restricted to word-sized data) are internally scaled to step through word-aligned memory. For example, the core would recognize that Post-Modified Register Indirect Addressing mode,
[Ws ++], will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8 -bit MCU code. Should a misaligned read or write be attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed, whereas if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap will then be executed, allowing the system and/or user to examine the machine state prior to execution of the address fault.

FIGURE 3-8: DATA ALIGNMENT

dsPIC30F2010

All byte loads into any W register are loaded into the LSB. The MSB is not modified.

A sign-extend (SE) instruction is provided to allow users to translate 8 -bit signed data to 16 -bit signed values. Alternatively, for 16 -bit unsigned data, users can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions, including the DSP instructions, operate only on words.

3.2.5 NEAR DATA SPACE

An 8 Kbyte 'near' data space is reserved in X address memory space between 0×0000 and 0×1 FFF, which is directly addressable via a 13-bit absolute address field within all memory direct instructions. The remaining X address space and all of the Y address space is addressable indirectly. Additionally, the whole of X data space is addressable using MOV instructions, which support memory direct addressing with a 16-bit address field.

3.2.6 SOFTWARE STACK

The dsPIC DSC device contains a software stack. W15 is used as the Stack Pointer.
The Stack Pointer always points to the first available free word, and grows from lower addresses towards higher addresses. It pre-decrements for stack pops, and post-increments for stack pushes, as shown in

Figure 3-9. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note: A PC push during exception processing will concatenate the SRL register to the MSB of the PC prior to the push.
There is a Stack Pointer Limit register (SPLIM) associated with the Stack Pointer. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to ' 0 ', because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the address thus generated is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value, 0x1FFE.

Similarly, a stack pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0×0800, thus preventing the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 3-9: CALL STACK FRAME

SFR Name	Address	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset	State	
W0	0000	W0 / WREG																0000	0000	0000	0000
W1	0002	W1																0000	0000	0000	0000
W2	0004	W2																0000	0000	0000	0000
W3	0006	W3																0000	0000	0000	0000
W4	0008	W4																0000	0000	0000	0000
W5	000A	W5																0000	0000	0000	0000
W6	000C	W6																0000	0000	0000	0000
W7	000E	W7																0000	0000	0000	0000
W8	0010	W8																0000	0000	0000	0000
W9	0012	W9																0000	0000	0000	0000
W10	0014	W10																0000	0000	0000	0000
W11	0016	W11																0000	0000	0000	0000
W12	0018	W12																0000	0000	0000	0000
W13	001A	W13																0000	0000	0000	0000
W14	001C	W14																0000	0000	0000	0000
W15	001E	W15																0000	1000	0000	0000
SPLIM	0020	SPLIM																0000	0000	0000	0000
ACCAL	0022	ACCAL																0000	0000	0000	0000
ACCAH	0024	ACCAH																0000	0000	0000	0000
ACCAU	0026	Sign Extension (ACCA<39>)								ACCAU								0000	0000	0000	0000
ACCBL	0028	ACCBL																0000	0000	0000	0000
ACCBH	002A	ACCBH																0000	0000	0000	0000
ACCBU	002C	Sign Extension (ACCB<39>)								ACCBU								0000	0000	0000	0000
PCL	002E	PCL																0000	0000	0000	0000
PCH	0030	-	-	-	-	-	-	-	-	-	PCH							0000	0000	0000	0000
TBLPAG	0032	-	-	-	-	-	-	-	-	TBLPAG								0000	0000	0000	0000
PSVPAG	0034	-	-	-	-	-	-	-	-	PSVPAG								0000	0000	0000	0000
RCOUNT	0036	RCOUNT																uuuu	uuuu	uuuu	uuuu
DCOUNT	0038	DCOUNT																uuuu	uuuu	uuuu	uuuu
DOSTARTL	003A	DOSTARTL															0	uuuu	uuuu	uuuu	uuu0
DOSTARTH	003C	-	-	-	-	-	-	-	-	-	DOSTARTH							0000	0000	Ouuu	uuuu
DOENDL	003E	DOENDL															0	uuuu	uuuu	uuuu	uuu0
DOENDH	0040	-	-	-	-	-	-	-	-	-	DOENDH							0000	0000	Ouuu	uuuu
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	z	c	0000	0000	0000	0000
Legend: $u=$ uninitialized bit																					

TABLE 3-3: CORE REGISTER MAP (CONTINUED)

SFR Name	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Address } \\ \text { (Home) } \end{array} \\ \hline \end{array}$	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset State
CORCON	0044	-	-	-	US	EDT	DL2	DL1	DLO	SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0000	000000100000
MODCON	0046	XMODEN	YMODEN	-	-	BWM<3:0>				YWM<3:0>				XWM<3:0>				0000	000000000000
Xmodsrt	0048	$\mathrm{XS}<15: 1>$															0	uuuu	uuuu uuxu uxu0
XMODEND	004A	XE<15:1>															1	uuuu	uuuu uuuu unu1
YMODSRT	004C	$\mathrm{YS}<15: 1>$															0	uuuu	uuuu uuuu unu0
YMODEND	004E	YE<15:1>															1	uuuu	uuuu uuuu unu1
XBREV	0050	BREN	XB<14:0>															uuuu	uuuu uuuu uxuu
DISICNT	0052	-	-	DISICNT<13:0>														0000	000000000000
Legend: $u=$ uninitialized bit																			

$\begin{array}{ll}\text { Legend: } & u=\text { uninitialized bit } \\ \text { Note: } & \text { Refer to "dsPIC30F }\end{array}$
Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

dsPIC30F2010

NOTES:

dsPIC30F2010

4.0 ADDRESS GENERATOR UNITS

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F/ 33F Programmer's Reference Manual" (DS70157).

The dsPIC DSC core contains two independent address generator units: the X AGU and Y AGU. The Y AGU supports word-sized data reads for the DSP MAC class of instructions only. The dsPIC DSC AGUs support three types of data addressing:

- Linear Addressing
- Modulo (Circular) Addressing
- Bit-Reversed Addressing

Linear and Modulo Data Addressing modes can be applied to data space or program space. Bit-Reversed Addressing is only applicable to data space addresses.

4.1 Instruction Addressing Modes

The Addressing modes in Table 4-1 form the basis of the Addressing modes optimized to support the specific features of individual instructions. The Addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types.

4.1.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register W0, which is denoted as WREG in these instructions. The destination is typically either the same file register, or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

TABLE 4-1: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

dsPIC30F2010

4.1.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:
Operand 3 = Operand 1 <function> Operand 2
where Operand 1 is always a working register (i.e., the Addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or 5 -bit literal. The result location can be either a W register or an address location. The following Addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- 5-bit or 10 -bit Literal

Note:	Not all instructions support all the Addressing modes given above. Individual instructions may support different subsets of these Addressing modes.

4.1.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP Accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, Move and Accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the Addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared between both source and destination (but typically only used by one).

In summary, the following Addressing modes are supported by Move and Accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the Addressing modes given above. Individual instructions may support different subsets of these Addressing modes.

4.1.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of Addressing modes to allow the user to effectively manipulate the data pointers through register indirect tables.
The two source operand prefetch registers must be a member of the set \{W8, W9, W10, W11\}. For data reads, W8 and W9 will always be directed to the X RAGU and W10 and W11 will always be directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W 8 and W 9 and Y data space for W10 and W11.

> | Note: | Register Indirect with Register Offset |
| :--- | :--- |
| | Addressing is only available for W9 (in X |
| space) and W11 (in Y space). | |

In summary, the following Addressing modes are supported by the MAC class of instructions:

- Register Indirect
- Register Indirect Post-modified by 2
- Register Indirect Post-modified by 4
- Register Indirect Post-modified by 6
- Register Indirect with Register Offset (Indexed)

4.1.5 OTHER INSTRUCTIONS

Besides the various Addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16 -bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

dsPIC30F2010

4.2 Modulo Addressing

Modulo addressing is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.
Modulo addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program space) and Y data spaces. Modulo addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.
In general, any particular circular buffer can only be configured to operate in one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers) based upon the direction of the buffer.
The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a Bidirectional mode, (i.e., address boundary checks will be performed on both the lower and upper address boundaries).

4.2.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and an end address be specified and loaded into the 16-bit modulo buffer address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 3-3).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32 K words (64 Kbytes).

4.2.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register MODCON<15:0> contains enable flags as well as a W register field to specify the W address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing. If $\mathrm{XWM}=15, \mathrm{X}$ RAGU and X WAGU Modulo Addressing are disabled. Similarly, if YWM $=15$, Y AGU Modulo Addressing is disabled.
The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied, is stored in MODCON $<3: 0>$ (see Table 3-3). Modulo addressing is enabled for X data space when XWM is set to any value other than 15 and the XMODEN bit is set at MODCON<15>.
The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied, is stored in MODCON $<7: 4>$. Modulo addressing is enabled for Y data space when YWM is set to any value other than 15 and the YMODEN bit is set at MODCON<14>.

dsPIC30F2010

FIGURE 4-1: MODULO ADDRESSING OPERATION EXAMPLE

dsPIC30F2010

4.2.3 MODULO ADDRESSING APPLICABILITY

Modulo addressing can be applied to the effective address calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when PreModify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (e.g., [W7 + W2]) is used, modulo address correction is performed, but the contents of the register remains unchanged.

4.3 Bit-Reversed Addressing

Bit-Reversed Addressing is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.
The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.3.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing is enabled when:

1. BWM (W register selection) in the MODCON register is any value other than 15 (the stack can not be accessed using Bit-Reversed Addressing) and
2. the BREN bit is set in the XBREV register and
3. the Addressing mode used is Register Indirect with Pre-Increment or Post-Increment.

If the length of a bit-reversed buffer is $M=2^{N}$ bytes, then the last ' N ' bits of the data buffer start address must be zeros.
$X B<14: 0>$ is the bit-reversed address modifier or 'pivot point' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note: All Bit-Reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.
When enabled, Bit-Reversed Addressing will only be executed for register indirect with pre-increment or post-increment addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data, and normal addresses will be generated instead. When Bit-Reversed Addressing is active, the W Address Pointer will always be added to the address modifier (XB) and the offset associated with the register Indirect Addressing mode will be ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo addressing and Bit-Reversed Addressing should not be enabled together. In the event that the user attempts to do this, bit reversed addressing will assume priority when active for the X WAGU, and X WAGU Modulo Addressing will be disabled. However, Modulo Addressing will continue to function in the X RAGU.
If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

FIGURE 4-2: BIT-REVERSED ADDRESS EXAMPLE

dsPIC30F2010

TABLE 4-2: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

Normal Address					Bit-Reversed Address				
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

TABLE 4-3: BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER

Buffer Size (Words)	$\mathbf{X B}<\mathbf{1 4 : 0 >}$ Bit-Reversed Address Modifier Value ${ }^{(1)}$
32768	0×4000
16384	0×2000
8192	0×1000
4096	0×0800
2048	0×0400
1024	0×0200
512	0×0100
256	0×0080
128	0×0040
64	0×0020
32	0×0010
16	0×0008
8	0×0004
4	0×0002
2	0×0001

Note 1: Modifier values greater than 256 words exceed the data memory available on the dsPIC30F2010 device

5.0 INTERRUPTS

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F/ 33F Programmer's Reference Manual" (DS70157).
The dsPIC30F2010 has 24 interrupt sources and 4 processor exceptions (traps), which must be arbitrated based on a priority scheme.
The CPU is responsible for reading the Interrupt Vector Table (IVT) and transferring the address contained in the interrupt vector to the program counter. The interrupt vector is transferred from the program data bus into the program counter, via a 24 -bit wide multiplexer on the input of the program counter.
The Interrupt Vector Table (IVT) and Alternate Interrupt Vector Table (AIVT) are placed near the beginning of program memory (0x000004). The IVT and AIVT are shown in Figure 5-1.
The interrupt controller is responsible for preprocessing the interrupts and processor exceptions, prior to their being presented to the processor core. The peripheral interrupts and traps are enabled, prioritized and controlled using centralized special function registers:

- IFSO<15:0>, IFS1<15:0>, IFS2<15:0>

All interrupt request flags are maintained in these three registers. The flags are set by their respective peripherals or external signals, and they are cleared via software.

- IEC0<15:0>, IEC1<15:0>, IEC2<15:0> All interrupt enable control bits are maintained in these three registers. These control bits are used to individually enable interrupts from the peripherals or external signals.
- IPC0<15:0>... IPC11<7:0>

The user-assignable priority level associated with each of these interrupts is held centrally in these twelve registers.

- IPL<3:0> The current CPU priority level is explicitly stored in the IPL bits. IPL<3> is present in the CORCON register, whereas $\mathrm{PL}<2: 0>$ are present in the STATUS Register (SR) in the processor core.
- INTCON1<15:0>, INTCON2<15:0> Global interrupt control functions are derived from these two registers. INTCON1 contains the control and status flags for the processor exceptions. The INTCON2 register controls the external interrupt request signal behavior and the use of the alternate vector table.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.
All interrupt sources can be user-assigned to one of 7 priority levels, 1 through 7, via the IPCx registers. Each interrupt source is associated with an interrupt vector, as shown in Figure 5-1. Levels 7 and 1 represent the highest and lowest maskable priorities, respectively.

Note: Assigning a priority level of 0 to an interrupt source is equivalent to disabling that interrupt.

If the NSTDIS bit (INTCON1<15>) is set, nesting of interrupts is prevented. Thus, if an interrupt is currently being serviced, processing of a new interrupt is prevented, even if the new interrupt is of higher priority than the one currently being serviced.

Note: The IPL bits become read-only whenever

 the NSTDIS bit has been set to ' 1 '.Certain interrupts have specialized control bits for features like edge or level triggered interrupts, inter-rupt-on-change, etc. Control of these features remains within the peripheral module which generates the interrupt.

The DISI instruction can be used to disable the processing of interrupts of priorities 6 and lower for a certain number of instructions, during which the DISI bit (INTCON2<14>) remains set.
When an interrupt is serviced, the PC is loaded with the address stored in the vector location in Program Memory that corresponds to the interrupt. There are 63 different vectors within the IVT (refer to Figure 5-1). These vectors are contained in locations 0×000004 through 0×0000 FE of program memory (refer to Figure 5-1). These locations contain 24-bit addresses, and in order to preserve robustness, an address error trap will take place should the PC attempt to fetch any of these words during normal execution. This prevents execution of random data as a result of accidentally decrementing a PC into vector space, accidentally mapping a data space address into vector space or the PC rolling over to 0×000000 after reaching the end of implemented program memory space. Execution of a GOTO instruction to this vector space will also generate an address error trap.

dsPIC30F2010

5.1 Interrupt Priority

The user-assignable Interrupt Priority (IP<2:0>) bits for each individual interrupt source are located in the Least Significant 3 bits of each nibble, within the IPCx register(s). Bit 3 of each nibble is not used and is read as a ' 0 '. These bits define the priority level assigned to a particular interrupt by the user.

Note: The user-selectable priority levels are from 0 , as the lowest priority, to level 7, as the highest priority.

Since more than one interrupt request source may be assigned to a specific user specified priority level, a means is provided to assign priority within a given level. This method is called "Natural Order Priority" and is final.

Natural Order Priority is determined by the position of an interrupt in the vector table, and only affects interrupt operation when multiple interrupts with the same user-assigned priority become pending at the same time.

Table 5-1 lists the interrupt numbers and interrupt sources for the dsPIC DSC devices and their associated vector numbers.

Note 1: The natural order priority scheme has 0 as the highest priority and 53 as the lowest priority.
2: The natural order priority number is the same as the INT number.

The ability for the user to assign every interrupt to one of seven priority levels means that the user can assign a very high overall priority level to an interrupt with a low natural order priority. For example, the PLVD (LowVoltage Detect) can be given a priority of 7. The INT0 (external interrupt 0) may be assigned to priority level 1 , thus giving it a very low effective priority.

TABLE 5-1: dsPIC30F2010 INTERRUPT

 VECTOR TABLE| INT Number | Vector Number | Interrupt Source |
| :---: | :---: | :---: |
| Highest Natural Order Priority | | |
| 0 | 8 | INTO - External Interrupt 0 |
| 1 | 9 | IC1 - Input Capture 1 |
| 2 | 10 | OC1 - Output Compare 1 |
| 3 | 11 | T1 - Timer 1 |
| 4 | 12 | IC2 - Input Capture 2 |
| 5 | 13 | OC2 - Output Compare 2 |
| 6 | 14 | T2 - Timer 2 |
| 7 | 15 | T3-Timer 3 |
| 8 | 16 | SPI1 |
| 9 | 17 | U1RX - UART1 Receiver |
| 10 | 18 | U1TX - UART1 Transmitter |
| 11 | 19 | ADC - ADC Convert Done |
| 12 | 20 | NVM - NVM Write Complete |
| 13 | 21 | SI2C $-I^{2} \mathrm{C}^{\text {TM }}$ Slave Interrupt |
| 14 | 22 | MI2C - 1 ${ }^{2} \mathrm{C}$ Master Interrupt |
| 15 | 23 | Input Change Interrupt |
| 16 | 24 | INT1 - External Interrupt 1 |
| 17 | 25 | IC7 - Input Capture 7 |
| 18 | 26 | IC8 - Input Capture 8 |
| 19 | 27 | Reserved |
| 20 | 28 | Reserved |
| 21 | 29 | Reserved |
| 22 | 30 | Reserved |
| 23 | 31 | INT2 - External Interrupt 2 |
| 24 | 32 | Reserved |
| 25 | 33 | Reserved |
| 26 | 34 | Reserved |
| 27 | 35 | Reserved |
| 28 | 36 | Reserved |
| 29 | 37 | Reserved |
| 30 | 38 | Reserved |
| 31 | 39 | Reserved |
| 32 | 40 | Reserved |
| 33 | 41 | Reserved |
| 34 | 42 | Reserved |
| 35 | 43 | Reserved |
| 36 | 44 | INT3 - External Interrupt 3 |
| 37 | 45 | Reserved |
| 38 | 46 | Reserved |
| 39 | 47 | PWM - PWM Period Match |
| 40 | 48 | QEI - QEI Interrupt |
| 41 | 49 | Reserved |
| 42 | 50 | Reserved |
| 43 | 51 | FLTA - PWM Fault A |
| 44 | 52 | Reserved |
| 45-53 | 53-61 | Reserved |
| Lowest Natural Order Priority | | |

5.2 Reset Sequence

A Reset is not a true exception, because the interrupt controller is not involved in the Reset process. The processor initializes its registers in response to a Reset, which forces the PC to zero. The processor then begins program execution at location 0x000000. А GOTO instruction is stored in the first program memory location, immediately followed by the address target for the GOTO instruction. The processor executes the GOTO to the specified address and then begins operation at the specified target (start) address.

5.2.1 RESET SOURCES

In addition to External Reset and Power-on Reset (POR), there are 6 sources of error conditions which 'trap' to the Reset vector.

- Watchdog Time-out:

The watchdog has timed out, indicating that the processor is no longer executing the correct flow of code.

- Uninitialized W Register Trap: An attempt to use an uninitialized W register as an Address Pointer will cause a Reset.
- Illegal Instruction Trap: Attempted execution of any unused opcodes will result in an illegal instruction trap. Note that a fetch of an illegal instruction does not result in an illegal instruction trap if that instruction is flushed prior to execution due to a flow change.
- Brown-out Reset (BOR):

A momentary dip in the power supply to the device has been detected, which may result in malfunction.

- Trap Lockout:

Occurrence of multiple trap conditions simultaneously will cause a Reset.

5.3 Traps

Traps can be considered as non-maskable interrupts indicating a software or hardware error, which adhere to a predefined priority as shown in Figure 5-1. They are intended to provide the user a means to correct erroneous operation during debug and when operating within the application.

Note: If the user does not intend to take corrective action in the event of a trap error condition, these vectors must be loaded with the address of a default handler that simply contains the RESET instruction. If, on the other hand, one of the vectors containing an invalid address is called, an address error trap is generated.

Note that many of these trap conditions can only be detected when they occur. Consequently, the questionable instruction is allowed to complete prior to trap exception processing. If the user chooses to recover from the error, the result of the erroneous action that caused the trap may have to be corrected.

There are 8 fixed priority levels for traps: Level 8 through Level 15, which means that the IPL3 is always set during processing of a trap.
If the user is not currently executing a trap, and he sets the IPL<3:0> bits to a value of ' 0111 ' (Level 7), then all interrupts are disabled, but traps can still be processed.

5.3.1 TRAP SOURCES

The following traps are provided with increasing priority. However, since all traps can be nested, priority has little effect.

Math Error Trap:

The math error trap executes under the following three circumstances:

1. Should an attempt be made to divide by zero, the divide operation will be aborted on a cycle boundary and the trap taken.
2. If enabled, a math error trap will be taken when an arithmetic operation on either accumulator A or B causes an overflow from bit 31 and the accumulator guard bits are not utilized.
3. If enabled, a math error trap will be taken when an arithmetic operation on either accumulator A or B causes a catastrophic overflow from bit 39 and all saturation is disabled.
4. If the shift amount specified in a shift instruction is greater than the maximum allowed shift amount, a trap will occur.

dsPIC30F2010

Address Error Trap:

This trap is initiated when any of the following circumstances occurs

1. A misaligned data word access is attempted.
2. A data fetch from an unimplemented data memory location is attempted.
3. A data access of an unimplemented program memory location is attempted.
4. An instruction fetch from vector space is attempted.

Note: In the MAC class of instructions, wherein the data space is split into X and Y data space, unimplemented X space includes all of Y space, and unimplemented Y space includes all of X space.
5. Execution of a "BRA \#literal" instruction or a "GOTO \#literal" instruction, where literal is an unimplemented program memory address.
6. Executing instructions after modifying the PC to point to unimplemented program memory addresses. The PC may be modified by loading a value into the stack and executing a RETURN instruction.

Stack Error Trap:

This trap is initiated under the following conditions:

1. The Stack Pointer is loaded with a value which is greater than the (user programmable) limit value written into the SPLIM register (stack overflow).
2. The Stack Pointer is loaded with a value which is less than 0×0800 (simple stack underflow).

Oscillator Fail Trap:

This trap is initiated if the external oscillator fails and operation becomes reliant on an internal RC backup.

5.3.2 HARD AND SOFT TRAPS

It is possible that multiple traps can become active within the same cycle (e.g., a misaligned word stack write to an overflowed address). In such a case, the fixed priority shown in Figure 5-1 is implemented, which may require the user to check if other traps are pending, in order to completely correct the fault.
'Soft' traps include exceptions of priority level 8 through level 11, inclusive. The arithmetic error trap (level 11) falls into this category of traps.
'Hard' traps include exceptions of priority level 12 through level 15, inclusive. The address error (level 12), stack error (level 13) and oscillator error (level 14) traps fall into this category.
Each hard trap that occurs must be acknowledged before code execution of any type may continue. If a lower priority hard trap occurs while a higher priority trap is pending, acknowledged, or is being processed, a hard trap conflict will occur.
The device is automatically Reset in a hard trap conflict condition. The TRAPR status bit ($\mathrm{RCON}<15>$) is set when the Reset occurs, so that the condition may be detected in software.

FIGURE 5-1: TRAP VECTORS

5.4 Interrupt Sequence

All interrupt event flags are sampled in the beginning of each instruction cycle by the IFSx registers. A pending interrupt request (IRQ) is indicated by the flag bit being equal to a ' 1 ' in an IFSx register. The IRQ will cause an interrupt to occur if the corresponding bit in the interrupt enable (IECX) register is set. For the remainder of the instruction cycle, the priorities of all pending interrupt requests are evaluated.
If there is a pending IRQ with a priority level greater than the current processor priority level in the IPL bits, the processor will be interrupted.

The processor then stacks the current program counter and the low byte of the processor STATUS register (SRL), as shown in Figure 5-2. The low byte of the status register contains the processor priority level at the time, prior to the beginning of the interrupt cycle. The processor then loads the priority level for this interrupt into the STATUS register. This action will disable all lower priority interrupts until the completion of the Interrupt Service Routine (ISR).

FIGURE 5-2: INTERRUPT STACK FRAME

Note 1: The user can always lower the priority level by writing a new value into SR. The Interrupt Service Routine must clear the interrupt flag bits in the IFSx register before lowering the processor interrupt priority, in order to avoid recursive interrupts.
2: The IPL3 bit ($\mathrm{CORCON}<3>$) is always clear when interrupts are being processed. It is set only during execution of traps.
The RETFIE (Return from Interrupt) instruction will unstack the program counter and status registers to return the processor to its state prior to the interrupt sequence.

5.5 Alternate Vector Table

In Program Memory, the Interrupt Vector Table (IVT) is followed by the Alternate Interrupt Vector Table (AIVT), as shown in Figure 5-1. Access to the Alternate Vector Table is provided by the ALTIVT bit in the INTCON2 register. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors. The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment, without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.

If the AIVT is not required, the program memory allocated to the AIVT may be used for other purposes. AIVT is not a protected section and may be freely programmed by the user.

5.6 Fast Context Saving

A context saving option is available using shadow registers. Shadow registers are provided for the DC, N, OV, Z and C bits in SR, and the registers W0 through W3. The shadows are only one level deep. The shadow registers are accessible using the PUSH.S and POP.S instructions only.
When the processor vectors to an interrupt, the push. S instruction can be used to store the current value of the aforementioned registers into their respective shadow registers.
If an ISR of a certain priority uses the PUSH.S and POP.S instructions for fast context saving, then a higher priority ISR should not include the same instructions. Users must save the key registers in software during a lower priority interrupt, if the higher priority ISR uses fast context saving.

5.7 External Interrupt Requests

The interrupt controller supports five external interrupt request signals, INT0-INT4. These inputs are edge sensitive; they require a low-to-high or a high-to-low transition to generate an interrupt request. The INTCON2 register has three bits, INT0EP-INT2EP, that select the polarity of the edge detection circuitry.

5.8 Wake-up from Sleep and Idle

The interrupt controller may be used to wake up the processor from either Sleep or Idle modes, if Sleep or Idle mode is active when the interrupt is generated.
If an enabled interrupt request of sufficient priority is received by the interrupt controller, then the standard interrupt request is presented to the processor. At the same time, the processor will wake-up from Sleep or Idle and begin execution of the Interrupt Service Routine needed to process the interrupt request.
TABLE 5-2: INTERRUPT CONTROLLER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset	State	
INTCON1	0080	NSTDIS	-	-	-	-	OVATE	OVBTE	COVTE	-	-	-	MATHERR	ADDRERR	STKERR	OSCFAIL	-	0000	0000	0000	0000
INTCON2	0082	ALTIVT	DISI	-	-	-	-	-	-	-	-	-	-	-	INT2EP	INT1EP	INTOEP	0000	0000	0000	0000
IFS0	0084	CNIF	MI2CIF	SI2CIF	NVMIF	ADIF	U1TXIF	U1RXIF	SPI1IF	T3IF	T2IF	OC2IF	IC2IF	T1IF	OC1IF	IC1IF	INTOIF	0000	0000	0000	0000
IFS1	0086	-	-	-	-	-	-	-	-	INT2IF	-	-	-	-	IC8IF	IC7IF	INT1IF	0000	0000	0000	0000
IFS2	0088	-	-	-	-	FLTAIF	-	-	QEIIF	PWMIF	-	-	-	-	-	-	-	0000	0000	0000	0000
IEC0	008C	CNIE	MI2CIE	SI2CIE	NVMIE	ADIE	U1TXIE	U1RXIE	SPI1IE	T3IE	T2IE	OC2IE	IC2IE	T1IE	OC1IE	IC1IE	INTOIE	0000	0000	0000	0000
IEC1	008E	-	-	-	-	-	-	-	-	INT2IE	-	-	-	-	IC8IE	IC7IE	INT1IE	0000	0000	0000	0000
IEC2	0090	-	-	-	-	FLTAIE	-	-	QEIIE	PWMIE	-	-	-	-	-	-	-	0000	0000	0000	0000
IPC0	0094	-	T1 $1 \mathrm{P}<2: 0>$			-	OC1IP<2:0>			-	IC1IP<2:0>			-	INT0IP<2:0>			0100	0100	0100	0100
IPC1	0096	-	T31P<2:0>			-	T2IP<2:0>			-	OC2IP<2:0>			-	IC2IP<2:0>			0100	0100	0100	0100
IPC2	0098	-	ADIP<2:0>			-	U1TXIP<2:0>			-	U1RXIP<2:0>			-	SPI1IP<2:0>			0100	0100	0100	0100
IPC3	009A	-	CNIP<2:0>			-	MI2CIP<2:0>			-	SI2CIP<2:0>			-	NVMIP<2:0>			0100	0100	0100	0100
IPC4	009C	-	-	-	-	-	IC8IP<2:0>			-	IC7IP<2:0>			-	INT11P<2:0>			0100	0100	0100	0100
IPC5	009E	-	INT2\|P<2:0>			-	-	-	-	-	-	-	-	-	-	-	-	0100	0000	0000	0000
IPC6	00A0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000	0000	0000	0000
IPC7	00A2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000	0000	0000	0000
IPC8	00A4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000	0000	0000	0000
IPC9	00A6	-	PWMIP<2:0>			-	-	-	-	-	-	-	-	-	-	-	-	0000	0000	0000	0000
IPC10	00A8	-	FLTAIP<2:0>			-	-	-	-	-	-	-	-	-	QEIIP<2:0>			0100	0000	0000	0100
IPC11	00AA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000	0000	0000	0000
Legend: $u=$ uninitialized bit																					

dsPIC30F2010

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F/ 33F Programmer's Reference Manual" (DS70157).

The dsPIC30F family of devices contains internal program Flash memory for executing user code. There are two methods by which the user can program this memory:

1. In-Circuit Serial Programming (ICSP) programming capability
2. Run-Time Self-Programming (RTSP)

6.1 In-Circuit Serial Programming (ICSP)

dsPIC30F devices can be serially programmed while in the end application circuit. This is simply done with two lines for Programming Clock and Programming Data (which are named PGC and PGD respectively), and three other lines for Power (VDD), Ground (Vss) and Master Clear ($\overline{\mathrm{MCLR}}$). this allows customers to manufacture boards with unprogrammed devices, and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

6.2 Run-Time Self-Programming (RTSP)

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions.
With RTSP, the user may erase program memory, 32 instructions (96 bytes) at a time and can write program memory data, 32 instructions (96 bytes) at a time.

6.3 Table Instruction Operation Summary

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in Word or Byte mode.
The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can access program memory in Word or Byte mode.
A 24-bit program memory address is formed using bits<7:0> of the TBLPAG register and the EA from a W register specified in the table instruction, as shown in Figure 6-1.

FIGURE 6-1: ADDRESSING FOR TABLE AND NVM REGISTERS

dsPIC30F2010

6.4 RTSP Operation

The dsPIC30F Flash program memory is organized into rows and panels. Each row consists of 32 instructions, or 96 bytes. Each panel consists of 128 rows, or $4 \mathrm{~K} \times 24$ instructions. RTSP allows the user to erase one row (32 instructions) at a time and to program 32 instructions at one time. RTSP may be used to program multiple program memory panels, but the table pointer must be changed at each panel boundary.
Each panel of program memory contains write latches that hold 32 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the panel write latches. The data to be programmed into the panel is loaded in sequential order into the write latches; instruction 0 , instruction 1 , etc. The instruction words loaded must always be from a 32 address boundary.
The basic sequence for RTSP programming is to set up a table pointer, then do a series of TBLWT instructions to load the write latches. Programming is performed by setting the special bits in the NVMCON register. 32 TBLWTL and four TBLWTH instructions are required to load the 32 instructions. If multiple panel programming is required, the table pointer needs to be changed and the next set of multiple write latches written.
All of the table write operations are single word writes (2 instruction cycles), because only the table latches are written. A programming cycle is required for programming each row.
The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range.

6.5 Control Registers

The four SFRs used to read and write the program Flash memory are:

- NVMCON
- NVMADR
- NVMADRU
- NVMKEY

6.5.1 NVMCON REGISTER

The NVMCON register controls which blocks are to be erased, which memory type is to be programmed, and the start of the programming cycle.

6.5.2 NVMADR REGISTER

The NVMADR register is used to hold the lower two bytes of the effective address. The NVMADR register captures the EA<15:0> of the last table instruction that has been executed and selects the row to write.

6.5.3 NVMADRU REGISTER

The NVMADRU register is used to hold the upper byte of the effective address. The NVMADRU register captures the EA<23:16> of the last table instruction that has been executed.

6.5.4 NVMKEY REGISTER

NVMKEY is a write-only register that is used for write protection. To start a programming or an erase sequence, the user must consecutively write 0×55 and OxAA to the NVMKEY register. Refer to Section 6.6 "Programming Operations" for further details.

Note: The user can also directly write to the NVMADR and NVMADRU registers to specify a program memory address for erasing or programming.

dsPIC30F2010

6.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. A programming operation is nominally 2 msec in duration and the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

6.6.1 PROGRAMMING ALGORITHM FOR PROGRAM FLASH

The user can erase and program one row of program Flash memory at a time. The general process is:

1. Read one row of program Flash (32 instruction words) and store into data RAM as a data "image".
2. Update the data image with the desired new data.
3. Erase program Flash row.
a) Setup NVMCON register for multi-word, program Flash, erase and set WREN bit.
b) Write address of row to be erased into NVMADRU/NVMDR.
c) Write ' 55 ' to NVMKEY.
d) Write 'AA' to NVMKEY.
e) Set the WR bit. This will begin erase cycle.
f) CPU will stall for the duration of the erase cycle.
g) The WR bit is cleared when erase cycle ends.
4. Write 32 instruction words of data from data RAM "image" into the program Flash write latches.
5. Program 32 instruction words into program Flash.
a) Setup NVMCON register for multi-word, program Flash, program and set WREN bit.
b) Write ' 55 ' to NVMKEY.
c) Write 'AA' to NVMKEY.
d) Set the WR bit. This will begin program cycle.
e) CPU will stall for duration of the program cycle.
f) The WR bit is cleared by the hardware when program cycle ends.
6. Repeat steps 1 through 5 as needed to program desired amount of program Flash memory.

6.6.2 ERASING A ROW OF PROGRAM MEMORY

Example 6-1 shows a code sequence that can be used to erase a row (32 instructions) of program memory.

EXAMPLE 6-1: ERASING A ROW OF PROGRAM MEMORY

```
; Setup NVMCON for erase operation, multi word write
; program memory selected, and writes enabled
    MOV #0x4041,W0 ;
    MOV WO,NVMCON ; Init NVMCON SFR
; Init pointer to row to be ERASED
    MOV #tblpage(PROG_ADDR),wo
    MOV WO NVMADRU ; Initialize PM Page Boundary SFR
    MOV #tbloffset(PROG_ADDR),W0 ; Intialize in-page EA[15:0] pointer
    MOV WO, NVMADR ; Intialize NVMADR SFR
    DISI #5 ; Block all interrupts with priority <7
    MOV #0x55,wo
    MOV WO,NVMKEY ; Write the 0x55 key
    MOV #0xAA,W1
    MOV W1,NVMKEY ; Write the OxAA key
    BSET NVMCON,#WR ; Start the erase sequence
    NOP ; Insert two NOPs after the erase
    NOP ; command is asserted
```


dsPIC30F2010

6.6.3 LOADING WRITE LATCHES

Example 6-2 shows a sequence of instructions that can be used to load the 96 bytes of write latches. 32 TBLWTL and 32 TBLWTH instructions are needed to load the write latches selected by the table pointer.

EXAMPLE 6-2: LOADING WRITE LATCHES

```
; Set up a pointer to the first program memory location to be written
; program memory selected, and writes enabled
\begin{tabular}{lll} 
MOV \#0x0000,wo & ; \\
MOV & WO,TBLPAG & Initialize PM Page Boundary SFR \\
MOV & \#0x6000,wo & ; An example program memory address
\end{tabular}
; Perform the TBLWT instructions to write the latches
; Oth_program_word
    MOV #LOW_WORD_0,W2
    MOV #HIGH BYTE 0,W3
    ; Write PM low word into program latch
    TBLWTH W3,[WO++] ; Write PM high byte into program latch
; 1st_program_word
    MOV #LOW_WORD_1,W2
    MOV #HIGH BYTE 1,W3
    TBLWTL W2,[W0] ; Write PM low word into program latch
    TBLWTH W3,[WO++] ; Write PM high byte into program latch
; 2nd_program_word
    MOV #LOW WORD 2,W2
    MOV #HIG\overline{H}}\mathrm{ BYT - 2,W3
    TBLWTL W2 [WO] ; Write PM low word into program latch
    TBLWTH W3, [WO++] ; Write PM high byte into program latch
    •
    .
; 31st_program_word
    MOV #LOW_WORD_31,W2 ;
    MOV #HIGH_BYTE_31,W3 ;
    TBLWTL W2, [WO] ; Write PM low word into program latch
    TBLWTH W3, [WO++] ; Write PM high byte into program latch
```

Note: In Example 6-2, the contents of the upper byte of W3 has no effect.

6.6.4 INITIATING THE PROGRAMMING SEQUENCE

For protection, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

EXAMPLE 6-3: INITIATING A PROGRAMMING SEQUENCE

DISI	\#5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV	\#0x55, W0	
MOV	W0, NVMKEY	; Write the 0x55 key
MOV	\# 0xAA, W1	;
MOV	W1, NVMKEY	; Write the 0xAA key
BSET	NVMCON, \#WR	; Start the erase sequence
NOP		; Insert two NOPs after the erase
NOP		command is asserted

TABLE 6-1: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All RESETS			
NVMCON	0760	WR	WREN	WRERR	-	-	-	-	TWRI	-	PROGOP<6:0>							0000	0000	0000	0000
NVMADR	0762	NVMADR<15:0>																uuuu	uuuu	uuuu	uuuu
NVMADRU	0764	-	-	-	-	-	-	-	-		NVMADR<23:16>							0000	0000	uuuu	uuuu
NVMKEY	0766	-	-	-	-	-	-	-	-		KEY<7:0>							0000	0000	0000	0000
Legend: $u=u n i n i t i a l i z e d ~ b i t ~$																					

dsPIC30F2010

NOTES:

dsPIC30F2010

7.0 DATA EEPROM MEMORY

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F/ 33F Programmer's Reference Manual" (DS70157).

The Data EEPROM Memory is readable and writable during normal operation over the entire VDD range. The data EEPROM memory is directly mapped in the program memory address space.

The four SFRs used to read and write the program Flash memory are used to access data EEPROM memory as well. As described in Section 4.0, these registers are:

- NVMCON
- NVMADR
- NVMADRU
- NVMKEY

The EEPROM data memory allows read and write of single words and 16 -word blocks. When interfacing to data memory, NVMADR, in conjunction with the NVMADRU register, is used to address the EEPROM location being accessed. TBLRDL and TBLWTL instructions are used to read and write data EEPROM. The dsPIC30F devices have up to 1 Kbyte of data EEPROM, with an address range from 0x7FFC00 to 0×7 FFFFE

A word write operation should be preceded by an erase of the corresponding memory location(s). The write typically requires 2 ms to complete, but the write time will vary with voltage and temperature.

A program or erase operation on the data EEPROM does not stop the instruction flow. The user is responsible for waiting for the appropriate duration of time before initiating another data EEPROM write/erase operation. Attempting to read the data EEPROM while a programming or erase operation is in progress results in unspecified data.

Control bit WR initiates write operations, similar to program Flash writes. This bit cannot be cleared, only set, in software. This bit is cleared in hardware at the completion of the write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.
The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset, during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location. The address register NVMADR remains unchanged.

Note: Interrupt flag bit NVMIF in the IFS0 register is set when write is complete. It must be cleared in software.

7.1 Reading the Data EEPROM

A TBLRD instruction reads a word at the current program word address. This example uses W0 as a pointer to data EEPROM. The result is placed in register W4, as shown in Example 7-1.

EXAMPLE 7-1: DATA EEPROM READ

```
MOV #LOW_ADDR_WORD,W0 ; Init Pointer
MOV #HIGH_ADDR_WORD,W1
MOV W1,TBLPAG
TBLRDL [ W0 ], W4 ; read data EEPROM
```


dsPIC30F2010

7.2 Erasing Data EEPROM

7.2.1 ERASING A BLOCK OF DATA EEPROM

In order to erase a block of data EEPROM, the NVMADRU and NVMADR registers must initially point to the block of memory to be erased. Configure NVMCON for erasing a block of data EEPROM, and set the WR and WREN bits in NVMCON register. Setting the WR bit initiates the erase, as shown in Example 7-2.

EXAMPLE 7-2: DATA EEPROM BLOCK ERASE

```
; Select data EEPROM block, ERASE, WREN bits
    MOV #4045,W0
    MOV WO,NVMCON ; Initialize NVMCON SFR
Start erase cycle by setting WR after writing key sequence
    DISI #5 ; Block all interrupts with priority <7
    ; for next 5 instructions
    MOV #0x55,W0
    MOV WO,NVMKEY ; Write the 0x55 key
    MOV #0xAA,W1
    MOV W1,NVMKEY ; Write the 0xAA key
    BSET NVMCON,#WR ; Initiate erase sequence
    NOP
    NOP
Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
```


7.2.2 ERASING A WORD OF DATA EEPROM

The NVMADRU and NVMADR registers must point to the block. Select erase a block of data Flash, and set the WR and WREN bits in NVMCON register. Setting the WR bit initiates the erase, as shown in Example 73.

EXAMPLE 7-3: DATA EEPROM WORD ERASE

```
; Select data EEPROM word, ERASE, WREN bits
    MOV #4044,W0
    MOV WO,NVMCON
; Start erase cycle by setting WR after writing key sequence
    DISI #5 ; Block all interrupts with priority <7
    ; for next 5 instructions
    MOV #0x55,W0
    MOV WO,NVMKEY ; Write the 0x55 key
    MOV #0xAA,W1
    MOV W1,NVMKEY ; Write the 0xAA key
    BSET NVMCON,#WR ; Initiate erase sequence
    NOP
    NOP
Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
```


dsPIC30F2010

7.3 Writing to the Data EEPROM

To write an EEPROM data location, the following sequence must be followed:

1. Erase data EEPROM word.
a) Select word, data EEPROM, erase and set WREN bit in NVMCON register.
b) Write address of word to be erased into NVMADRU/NVMADR.
c) Enable NVM interrupt (optional).
d) Write ' 55 ' to NVMKEY.
e) Write 'AA' to NVMKEY.
f) Set the WR bit. This will begin erase cycle.
g) Either poll NVMIF bit or wait for NVMIF interrupt.
h) The WR bit is cleared when the erase cycle ends.
2. Write data word into data EEPROM write latches.
3. Program 1 data word into data EEPROM.
a) Select word, data EEPROM, program and set WREN bit in NVMCON register.
b) Enable NVM write done interrupt (optional).
c) Write ' 55 ' to NVMKEY.
d) Write 'AA' to NVMKEY.
e) Set The WR bit. This will begin program cycle.
f) Either poll NVMIF bit or wait for NVM interrupt.
g) The WR bit is cleared when the write cycle ends.

The write will not initiate if the above sequence is not exactly followed (write 0x55 to NVMKEY, write 0xAA to NVMCON, then set WR bit) for each word. It is strongly recommended that interrupts be disabled during this code segment.
Additionally, the WREN bit in NVMCON must be set to enable writes. This mechanism prevents accidental writes to data EEPROM, due to unexpected code execution. The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect the current write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.
At the completion of the write cycle, the WR bit is cleared in hardware and the Nonvolatile Memory Write Complete Interrupt Flag bit (NVMIF) is set. The user may either enable this interrupt, or poll this bit. NVMIF must be cleared by software.

7.3.1 WRITING A WORD OF DATA EEPROM

Once the user has erased the word to be programmed, then a table write instruction is used to write one write latch, as shown in Example 7-4.

EXAMPLE 7-4: DATA EEPROM WORD WRITE

```
; Point to data memory
    MOV #LOW_ADDR_WORD,W0 ; Init pointer
    MOV #HIGH_ADDR_WORD,W1
    MOV W1,TBLPAG
    MOV #LOW (WORD),W2 ; Get data
    TBLWTL W2,[ WO] ; Write data
; The NVMADR captures last table access address
; Select data EEPROM for 1 word op
        MOV #0x4004,W0
        MOV WO,NVMCON
; Operate key to allow write operation
        DISI #5 ; Block all interrupts with priority <7
                                ; for next 5 instructions
        MOV #0x55,W0
        MOV WO NVMKEY ; Write the 0x55 key
        MOV #0xAA,W1
        MOV W1,NVMKEY ; Write the 0xAA key
        BSET NVMCON,#WR ; Initiate program sequence
        NOP
        NOP
Write cycle will complete in 2mS. CPU is not stalled for the Data Write Cycle
User can poll WR bit, use NVMIF or Timer IRQ to determine write complete
```


dsPIC30F2010

7.3.2 WRITING A BLOCK OF DATA EEPROM

To write a block of data EEPROM, write to all sixteen latches first, then set the NVMCON register and program the block.
EXAMPLE 7-5: DATA EEPROM BLOCK WRITE

MOV	\#LOW_ADDR_WORD, W0	; Init pointer
MOV	\#HIGH_ADDR_WORD, W1	
MOV	W1, TBLPAG	
MOV	\#datal,w2	; Get 1st data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data2,W2	; Get 2nd data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data3, W2	; Get 3rd data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data4,W2	; Get 4th data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data5,W2	; Get 5th data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data6,W2	; Get 6th data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data7,W2	; Get 7th data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data8, W2	; Get 8th data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data9, w2	; Get 9th data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data10,w2	; Get loth data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data11,W2	; Get 11th data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data12,W2	; Get 12th data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data13, W2	; Get 13th data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data14, W2	; Get 14th data
TBLWTL	W2, [W0] ++	; write data
MOV	\#data15, W2	; Get 15th data
TBLWTL	W2 , [W0] ++	; write data
MOV	\#data16,W2	; Get 16th data
TBLWTL	W2, [W0] ++	; write data. The NVMADR captures last table access address.
MOV	\#0x400A, W0	; Select data EEPROM for multi word op
MOV	WO, NVMCON	; Operate Key to allow program operation
DISI	\# 5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV	\#0x55, W0	
MOV	W0, NVMKEY	; Write the 0x55 key
MOV	\# 0xAA, W1	
MOV	W1, NVMKEY	; Write the 0xAA key
BSET	NVMCON, \#WR	; Start write cycle
NOP		
NOP		

7.4 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.5 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared; also, the Power-up Timer prevents EEPROM write.
The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

8.0 I/O PORTS

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046)

All of the device pins (except Vdd, Vss, $\overline{M C L R}$ and OSC1/CLKI) are shared between the peripherals and the parallel I/O ports.
All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

8.1 Parallel I/O (PIO) Ports

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with the operation of the port pin. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a ' 1 ', then the pin
is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch (LATx). Reads from the port (PORTx), read the port pins, and writes to the port pins, write the latch (LATx).
Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.
When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.
A parallel I/O (PIO) port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pad cell. Figure 8-1 shows how ports are shared with other peripherals, and the associated I/O cell (pad) to which they are connected. Table 8-1 shows the formats of the registers for the shared ports, PORTB through PORTF.

FIGURE 8-1: BLOCK DIAGRAM OF A SHARED PORT STRUCTURE

dsPIC30F2010

8.2 Configuring Analog Port Pins

The use of the ADPCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORT register, all pins configured as analog input channel will read as cleared (a low level).
Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins), may cause the input buffer to consume current that exceeds the device specifications.

8.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP.

EXAMPLE 8-1: PORT WRITE/READ EXAMPLE

```
MOV OxFF00, W0; Configure PORTB<15:8>
    ; as inputs
MOV WO, TRISBB; and PORTB<7:0> as outputs
NOP ; Delay 1 cycle
btssPORTB, #13; Next Instruction
```


8.3 Input Change Notification Module

The Input Change Notification module provides the dsPIC30F devices the ability to generate interrupt requests to the processor in response to a change-ofstate on selected input pins. This module is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. There are up to 22 external signals (CNO through CN21) that may be selected (enabled) for generating an interrupt request on a change-of-state.
dsPIC30F2010
TABLE 8-1: dsPIC30F2010 PORT REGISTER MAP

[^1]
dsPIC30F2010

NOTES:

dsPIC30F2010

9.0 TIMER1 MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046)

This section describes the 16-bit general purpose Timer1 module and associated operational modes. Figure 9-1 depicts the simplified block diagram of the 16-bit Timer1 Module.

Note: Timer1 is a 'Type A' timer. Please refer to the specifications for a Type A timer in Section 22.0 "Electrical Characteristics" of this document.

The following sections provide a detailed description of the operational modes of the timers, including setup and control registers along with associated block diagrams.

The Timer1 module is a 16-bit timer which can serve as the time counter for the real-time clock, or operate as a free running interval timer/counter. The 16 -bit timer has the following modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter

Further, the following operational characteristics are supported:

- Timer gate operation
- Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16 -bit period register match or falling edge of external gate signal

These operating modes are determined by setting the appropriate bit(s) in the 16-bit SFR, T1CON. Figure 9-1 presents a block diagram of the 16-bit timer module.

16-bit Timer Mode: In the 16-bit Timer mode, the timer increments on every instruction cycle up to a match value, preloaded into the period register PR1, then resets to ' 0 ' and continues to count.
When the CPU goes into the Idle mode, the timer will stop incrementing unless the TSIDL (T1CON<13>) bit $=0$. If TSIDL $=1$, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode.
16-bit Synchronous Counter Mode: In the 16-bit Synchronous Counter mode, the timer increments on the rising edge of the applied external clock signal, which is synchronized with the internal phase clocks. The timer counts up to a match value preloaded in PR1, then resets to ' 0 ' and continues.

When the CPU goes into the Idle mode, the timer will stop incrementing, unless the respective TSIDL bit $=0$. If TSIDL $=1$, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode.

16-bit Asynchronous Counter Mode: In the 16-bit Asynchronous Counter mode, the timer increments on every rising edge of the applied external clock signal. The timer counts up to a match value preloaded in PR1, then resets to ' 0 ' and continues.

When the timer is configured for the Asynchronous mode of operation and the CPU goes into the Idle mode, the timer will stop incrementing if $\mathrm{TSIDL}=1$.

dsPIC30F2010

FIGURE 9-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM (TYPE A TIMER)

9.1 Timer Gate Operation

The 16 -bit timer can be placed in the Gated Time Accumulation mode. This mode allows the internal Tcy to increment the respective timer when the gate input signal (T1CK pin) is asserted high. Control bit TGATE ($\mathrm{T} 1 \mathrm{CON}<6>$) must be set to enable this mode. The timer must be enabled ($\mathrm{TON}=1$) and the timer clock source set to internal $(\mathrm{TCS}=0)$.

When the CPU goes into the Idle mode, the timer will stop incrementing, unless TSIDL $=0$. If TSIDL $=1$, the timer will resume the incrementing sequence upon termination of the CPU Idle mode.

9.2 Timer Prescaler

The input clock (Fosc/4 or external clock) to the 16 -bit Timer, has a prescale option of 1:1, 1:8, 1:64, and 1:256 selected by control bits TCKPS<1:0> ($\mathrm{T} 1 \mathrm{CON}<5: 4>$). The prescaler counter is cleared when any of the following occurs:

- a write to the TMR1 register
- clearing of the TON bit ($\mathrm{T} 1 \mathrm{CON}<15>$)
- device Reset such as POR and BOR

However, if the timer is disabled ($\mathrm{TON}=0$), then the timer prescaler cannot be reset since the prescaler clock is halted.

TMR1 is not cleared when T1CON is written. It is cleared by writing to the TMR1 register.

9.3 Timer Operation During Sleep Mode

During CPU Sleep mode, the timer will operate if:

- The timer module is enabled ($\mathrm{TON}=1$) and
- The timer clock source is selected as external (TCS = 1) and
- The TSYNC bit ($\mathrm{T} 1 \mathrm{CON}<2>$) is asserted to a logic ' 0 ', which defines the external clock source as asynchronous

When all three conditions are true, the timer will continue to count up to the period register and be Reset to 0×0000.
When a match between the timer and the period register occurs, an interrupt can be generated, if the respective timer interrupt enable bit is asserted.

dsPIC30F2010

9.4 Timer Interrupt

The 16-bit timer has the ability to generate an interrupt on period match. When the timer count matches the period register, the T1IF bit is asserted and an interrupt will be generated, if enabled. The T1IF bit must be cleared in software. The timer interrupt flag T1IF is located in the IFSO control register in the Interrupt Controller.
When the Gated Time Accumulation mode is enabled, an interrupt will also be generated on the falling edge of the gate signal (at the end of the accumulation cycle).
Enabling an interrupt is accomplished via the respective timer interrupt enable bit, T1IE. The timer interrupt enable bit is located in the IECO control register in the Interrupt Controller.

9.5 Real-Time Clock

Timer1, when operating in Real-Time Clock (RTC) mode, provides time-of-day and event time stamping capabilities. Key operational features of the RTC are:

- Operation from 32 kHz LP oscillator
- 8-bit prescaler
- Low power
- Real-Time Clock Interrupts
- These Operating modes are determined by setting the appropriate bit(s) in the T1CON Control register

FIGURE 9-2: RECOMMENDED COMPONENTS FOR TIMER1 LP OSCILLATOR RTC

9.5.1 RTC OSCILLATOR OPERATION

When the $\mathrm{TON}=1$, TCS $=1$ and TGATE $=0$, the timer increments on the rising edge of the 32 kHz LP oscillator output signal, up to the value specified in the period register, and is then Reset to ' 0 '.
The TSYNC bit must be asserted to a logic ' 0 ' (Asynchronous mode) for correct operation.
Enabling LPOSCEN ($\mathrm{OSCCON}<1>$) will disable the normal Timer and Counter modes, and enable a timer carry-out wake-up event.
When the CPU enters Sleep mode, the RTC will continue to operate, provided the 32 kHz external crystal oscillator is active and the control bits have not been changed. The TSIDL bit should be cleared to ' 0 ' in order for RTC to continue operation in Idle mode.

9.5.2 RTC INTERRUPTS

When an interrupt event occurs, the respective interrupt flag, T1IF, is asserted and an interrupt will be generated, if enabled. The T1IF bit must be cleared in software. The respective Timer interrupt flag, T1IF, is located in the IFSO status register in the Interrupt Controller.
Enabling an interrupt is accomplished via the respective timer interrupt enable bit, T1IE. The Timer interrupt enable bit is located in the IECO control register in the Interrupt Controller.

dsPIC30F2010

TABLE 9-1: TIMER1 REGISTER MAP

dsPIC30F2010

10.0 TIMER2/3 MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046)

This section describes the 32-bit general purpose Timer module (Timer2/3) and associated operational modes. Figure 10-1 depicts the simplified block diagram of the 32 -bit Timer2/3 module. Figure 10-2 and Figure 10-3 show Timer2/3 configured as two independent 16 -bit timers; Timer2 and Timer3, respectively.

Note: \quad Timer2 is a 'Type B' timer and Timer3 is a 'Type C' timer. Please refer to the appropriate timer type in Section 22.0 "Electrical Characteristics" of this document.

The Timer2/3 module is a 32 -bit timer, which can be configured as two 16 -bit timers, with selectable operating modes. These timers are utilized by other peripheral modules such as:

- Input Capture
- Output Compare/Simple PWM

The following sections provide a detailed description, including setup and control registers, along with associated block diagrams for the operational modes of the timers.
The 32-bit timer has the following modes:

- Two independent 16-bit timers (Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit Timer operation
- Single 32-bit Synchronous Counter

Further, the following operational characteristics are supported:

- ADC Event Trigger
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-bit Period Register Match

These operating modes are determined by setting the appropriate bit(s) in the 16 -bit T2CON and T3CON SFRs.

For 32-bit timer/counter operation, Timer2 is the least significant word and Timer3 is the most significant word of the 32-bit timer.

Note: For 32-bit timer operation, T3CON control bits are ignored. Only T2CON control bits are used for setup and control. Timer 2 clock and gate inputs are utilized for the 32-bit timer module, but an interrupt is generated with the Timer3 interrupt flag (T3IF), and the interrupt is enabled with the Timer3 interrupt enable bit (T3IE).
16-bit Mode: In the 16-bit mode, Timer2 and Timer3 can be configured as two independent 16-bit timers. Each timer can be set up in either 16 -bit Timer mode or 16-bit Synchronous Counter mode. See Section 9.0 "Timer1 Module" for details on these two operating modes.

The only functional difference between Timer2 and Timer3 is that Timer2 provides synchronization of the clock prescaler output. This is useful for high frequency external clock inputs.
32-bit Timer Mode: In the 32-bit Timer mode, the timer increments on every instruction cycle up to a match value, preloaded into the combined 32 -bit period register PR3/PR2, then resets to ' 0 ' and continues to count.
For synchronous 32-bit reads of the Timer2/Timer3 pair, reading the least significant word (TMR2 register) will cause the most significant word (msw) to be read and latched into a 16-bit holding register, termed TMR3HLD.
For synchronous 32 -bit writes, the holding register (TMR3HLD) must first be written to. When followed by a write to the TMR2 register, the contents of TMR3HLD will be transferred and latched into the MSB of the 32-bit timer (TMR3).
32-bit Synchronous Counter Mode: In the 32-bit Synchronous Counter mode, the timer increments on the rising edge of the applied external clock signal, which is synchronized with the internal phase clocks. The timer counts up to a match value preloaded in the combined 32-bit period register PR3/PR2, then resets to ' 0 ' and continues.

When the timer is configured for the Synchronous Counter mode of operation and the CPU goes into the Idle mode, the timer will stop incrementing, unless the TSIDL (T2CON<13>) bit = ' 0 '. If TSIDL = ' 1 ', the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode.

dsPIC30F2010

FIGURE 10-1: 32-BIT TIMER2/3 BLOCK DIAGRAM

Note: Timer Configuration bit T32, T2CON $(<3>)$ must be set to 1 for a 32-bit timer/counter operation. All control bits are respective to the T2CON register.

dsPIC30F2010

FIGURE 10-2: 16-BIT TIMER2 BLOCK DIAGRAM (TYPE B TIMER)

FIGURE 10-3: 16-BIT TIMER3 BLOCK DIAGRAM (TYPE C TIMER)

Note: The dsPIC30F2010 does not have an external pin input to TIMER3. The following modes should not be used: 1. $\mathrm{TCS}=1$
2. TCS $=0$ and TGATE $=1$ (gated time accumulation)

dsPIC30F2010

10.1 Timer Gate Operation

The 32-bit timer can be placed in the Gated Time Accumulation mode. This mode allows the internal Tcy to increment the respective timer when the gate input signal (T2CK pin) is asserted high. Control bit TGATE (T2CON<6>) must be set to enable this mode. When in this mode, Timer2 is the originating clock source. The TGATE setting is ignored for Timer3. The timer must be enabled ($\mathrm{TON}=1$) and the timer clock source set to internal (TCS = 0).

The falling edge of the external signal terminates the count operation, but does not reset the timer. The user must reset the timer in order to start counting from zero.

10.2 ADC Event Trigger

When a match occurs between the 32-bit timer (TMR3/ TMR2) and the 32-bit combined period register (PR3/ PR2), a special ADC trigger event signal is generated by Timer3.

10.3 Timer Prescaler

The input clock (FOSC/4 or external clock) to the timer has a prescale option of 1:1, 1:8, 1:64, and 1:256 selected by control bits TCKPS<1:0> (T2CON<5:4> and T3CON<5:4>). For the 32-bit timer operation, the originating clock source is Timer2. The prescaler operation for Timer3 is not applicable in this mode. The prescaler counter is cleared when any of the following occurs:

- a write to the TMR2/TMR3 register
- clearing either of the TON (T2CON<15> or T3CON<15>) bits to ' 0 '
- device Reset such as POR and BOR

However, if the timer is disabled ($\mathrm{TON}=0$), then the Timer 2 prescaler cannot be reset, since the prescaler clock is halted.
TMR2/TMR3 is not cleared when T2CON/T3CON is written.

10.4 Timer Operation During Sleep Mode

During CPU Sleep mode, the timer will not operate, because the internal clocks are disabled.

10.5 Timer Interrupt

The 32-bit timer module can generate an interrupt on period match, or on the falling edge of the external gate signal. When the 32 -bit timer count matches the respective 32-bit period register, or the falling edge of the external "gate" signal is detected, the T3IF bit (IFSO<7>) is asserted and an interrupt will be generated if enabled. In this mode, the T3IF interrupt flag is used as the source of the interrupt. The T3IF bit must be cleared in software.

Enabling an interrupt is accomplished via the respective timer interrupt enable bit, T3IE (IEC0<7>).
TABLE 10-1: TIMER2/3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset State
TMR2	0106	Timer2 Register																uuuu	uuuu uuuu uuuu
TMR3HLD	0108	Timer3 Holding Register (For 32-bit timer operations only)																uuuu	uuuu uuuu uxuu
TMR3	010A	Timer3 Register																uuuu	unuu unuu uxuu
PR2	010C	Period Register 2																1111	111111111111
PR3	010E	Period Register 3																1111	111111111111
T2CON	0110	TON	-	TSIDL	-	-	-	-	-	-	TGATE	TCKPS1	TCKPSO	T32	-	TCS	-	0000	000000000000
T3CON	0112	TON	-	TSIDL	-	-	-	-	-	-	tGATE	TCKPS1	TCKPSO	-	-	TCS	-	0000	000000000000
Legend: u = uninitializ																			
Note:	Refe	to "ds	$30 F$	Family	Referen	Man	al" (DS	70046	for	criptio	of regi	ster bit fie							

dsPIC30F2010

NOTES:

dsPIC30F2010

11.0 INPUT CAPTURE MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046)

This section describes the Input Capture module and associated operational modes. The features provided by this module are useful in applications requiring Frequency (Period) and Pulse measurement. Figure 11-1 depicts a block diagram of the Input Capture module. Input capture is useful for such modes as:

- Frequency/Period/Pulse Measurements
- Additional sources of External Interrupts

The key operational features of the Input Capture module are:

- Simple Capture Event mode
- Timer2 and Timer3 mode selection
- Interrupt on input capture event

These operating modes are determined by setting the appropriate bits in the ICxCON register (where $\mathrm{x}=$ $1,2, \ldots, N)$. The dsPIC DSC devices contain up to 8 capture channels, (i.e., the maximum value of N is 8).

Note: The dsPIC30F2010 device has four capture inputs - IC1, IC2, IC7 and IC8. The naming of these four capture channels is intentional and preserves software compatibility with other dsPIC DSC devices.

FIGURE 11-1: INPUT CAPTURE MODE BLOCK DIAGRAM

Note: Where ' x ' is shown, reference is made to the registers or bits associated to the respective input capture channels 1 through N .

dsPIC30F2010

11.1 Simple Capture Event Mode

The simple capture events in the dsPIC30F product family are:

- Capture every falling edge
- Capture every rising edge
- Capture every 4th rising edge
- Capture every 16 th rising edge
- Capture every rising and falling edge

These simple Input Capture modes are configured by setting the appropriate bits $\mathrm{ICM}<2: 0>$ (ICxCON<2:0>).

11.1.1 CAPTURE PRESCALER

There are four input capture prescaler settings, specified by bits ICM<2:0> (ICxCON<2:0>). Whenever the capture channel is turned off, the prescaler counter will be cleared. In addition, any Reset will clear the prescaler counter.

11.1.2 CAPTURE BUFFER OPERATION

Each capture channel has an associated FIFO buffer, which is four 16 -bit words deep. There are two status flags, which provide status on the FIFO buffer:

- ICBNE - Input Capture Buffer Not Empty
- ICOV - Input Capture Overflow

The ICBFNE will be set on the first input capture event and remain set until all capture events have been read from the FIFO. As each word is read from the FIFO, the remaining words are advanced by one position within the buffer.
In the event that the FIFO is full with four capture events and a fifth capture event occurs prior to a read of the FIFO, an overflow condition will occur and the ICOV bit will be set to a logic ' 1 '. The fifth capture event is lost and is not stored in the FIFO. No additional events will be captured until all four events have been read from the buffer.

If a FIFO read is performed after the last read and no new capture event has been received, the read will yield indeterminate results.

11.1.3 TIMER2 AND TIMER3 SELECTION MODE

The input capture module consists of up to 8 input capture channels. Each channel can select between one of two timers for the time base, Timer2 or Timer3.
Selection of the timer resource is accomplished through SFR bit ICTMR (ICxCON<7>). Timer3 is the default timer resource available for the input capture module.

11.1.4 HALL SENSOR MODE

When the input capture module is set for capture on every edge, rising and falling, $I C M<2: 0>=001$, the following operations are performed by the input capture logic:

- The input capture interrupt flag is set on every edge, rising and falling.
- The interrupt on Capture mode setting bits, $|C|<1: 0>$, is ignored, since every capture generates an interrupt.
- A capture overflow condition is not generated in this mode.

dsPIC30F2010

11.2 Input Capture Operation During Sleep and Idle Modes

An input capture event will generate a device wake-up or interrupt, if enabled, if the device is in CPU Idle or Sleep mode.

Independent of the timer being enabled, the input capture module will wake-up from the CPU Sleep or Idle mode when a capture event occurs, if ICM<2:0> = 111 and the interrupt enable bit is asserted. The same wake-up can generate an interrupt, if the conditions for processing the interrupt have been satisfied. The wake-up feature is useful as a method of adding extra external pin interrupts.

11.2.1 INPUT CAPTURE IN CPU SLEEP MODE

CPU Sleep mode allows input capture module operation with reduced functionality. In the CPU Sleep mode, the $\mathrm{ICl}<1: 0>$ bits are not applicable, and the input capture module can only function as an external interrupt source.

The capture module must be configured for interrupt only on the rising edge (ICM<2:0> = 111), in order for the input capture module to be used while the device is in Sleep mode. The prescale settings of 4:1 or 16:1 are not applicable in this mode.

11.2.2 INPUT CAPTURE IN CPU IDLE MODE

CPU Idle mode allows input capture module operation with full functionality. In the CPU Idle mode, the interrupt mode selected by the $\mathrm{ICl}<1: 0>$ bits are applicable, as well as the $4: 1$ and $16: 1$ capture prescale settings, which are defined by control bits $\mathrm{ICM}<2: 0>$. This mode requires the selected timer to be enabled. Moreover, the ICSIDL bit must be asserted to a logic ' 0 '.

If the input capture module is defined as ICM<2:0> = 111 in CPU Idle mode, the input capture pin will serve only as an external interrupt pin.

11.3 Input Capture Interrupts

The input capture channels have the ability to generate an interrupt, based upon the selected number of capture events. The selection number is set by control bits $\mathrm{ICl}<1: 0>$ (ICxCON<6:5>).

Each channel provides an interrupt flag (ICxIF) bit. The respective capture channel interrupt flag is located in the corresponding IFSx status register.
Enabling an interrupt is accomplished via the respective capture channel interrupt enable (ICxIE) bit. The capture interrupt enable bit is located in the corresponding IEC Control register.

dsPIC30F2010

TABLE 11-1: INPUT CAPTURE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6 Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset	State
IC1BUF	0140	Input 1 Capture Register															uuuu	uuuu	uuuu uuuu
IC1CON	0142	-	-	ICSIDL	-	-	-	-	-	ICTMR	ICI<1:0>	ICOV	ICBNE		ICM<2:0>		0000	0000	00000000
IC2BUF	0144	Input 2 Capture Register															uuuu	uuuu	uuuu uuuu
IC2CON	0146	-	-	ICSIDL	-	-	-	-	-	ICTMR	ICl<1:0>	ICOV	ICBNE		ICM<2:0>		0000	0000	00000000
IC3BUF	0148	Input 3 Capture Register															uuuu	uuuu	uuuu uxuu
IC3CON	014A	-	-	ICSIDL	-	-	-	-	-	ICTMR	$\mathrm{C} \mid<1: 0>$	ICOV	ICBNE		ICM<2:0>		0000	0000	00000000
IC4BUF	014C	Input 4 Capture Register															uuuu	uxuu	uuuu uuuu
IC4CON	014E	-	-	ICSIDL	-	-	-	-	-	ICTMR	$\mathrm{ICl}<1: 0>$	ICOV	ICBNE		ICM<2:0>		0000	0000	00000000
IC5BUF	0150	Input 5 Capture Register															uuuu	uuuu	uuuu uuuu
IC5CON	0152	-	-	ICSIDL	-	-	-	-	-	ICTMR	ICI<1:0>	ICOV	ICBNE		ICM<2:0>		0000	0000	00000000
IC6BUF	0154	Input 6 Capture Register															uuuu	uuuu	uuuu uuuu
IC6CON	0156	-	-	ICSIDL	-	-	-	-	-	ICTMR	$\mathrm{ICl}<1: 0>$	ICOV	ICBNE		ICM<2:0>		0000	0000	00000000
IC7BUF	0158	Input 7 Capture Register															uuuu	uxuu	uuuu uuuu
IC7CON	015A	-	-	ICSIDL	-	-	-	-	-	ICTMR	$\mathrm{ICl}<1: 0>$	ICOV	ICBNE		ICM<2:0>		0000	0000	00000000
IC8BUF	015C	Input 8 Capture Register															uuuu	uuuu	uuuu uuuu
IC8CON	015E	-	-	ICSIDL	-	-	-	-	-	ICTMR	$\mathrm{ICl}<1: 0>$	ICOV	ICBNE		ICM<2:0>		0000	0000	00000000

Legend: $u=$ uninitialized bit
Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

dsPIC30F2010

12.0 OUTPUT COMPARE MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046)

This section describes the Output Compare module and associated operational modes. The features provided by this module are useful in applications requiring operational modes such as:

- Generation of Variable Width Output Pulses
- Power Factor Correction

Figure 12-1 depicts a block diagram of the Output Compare module.

The key operational features of the Output Compare module include:

- Timer2 and Timer3 Selection mode
- Simple Output Compare Match mode
- Dual Output Compare Match mode
- Simple PWM mode
- Output Compare during Sleep and Idle modes
- Interrupt on Output Compare/PWM Event

These operating modes are determined by setting the appropriate bits in the 16 -bit OCxCON SFR (where $x=1$ and 2).
OCxRS and OCxR in the figure represent the Dual Compare registers. In the Dual Compare mode, the OCxR register is used for the first compare and OCxRS is used for the second compare.

FIGURE 12-1: OUTPUT COMPARE MODE BLOCK DIAGRAM

Note: Where ' x ' is shown, reference is made to the registers associated with the respective output compare channels 1 and 2.

dsPIC30F2010

12.1 Timer2 and Timer3 Selection Mode

Each output compare channel can select between one of two 16-bit timers: Timer2 or Timer3.

The selection of the timers is controlled by the OCTSEL bit ($\mathrm{OCxCON}<3>$). Timer2 is the default timer resource for the Output Compare module.

12.2 Simple Output Compare Match Mode

When control bits $\mathrm{OCM}<2: 0>(\mathrm{OCxCON}<2: 0>)=001$, 010 or 011 , the selected output compare channel is configured for one of three simple Output Compare Match modes:

- Compare forces I/O pin low
- Compare forces I/O pin high
- Compare toggles I/O pin

The OCxR register is used in these modes. The OCxR register is loaded with a value and is compared to the selected incrementing timer count. When a compare occurs, one of these Compare Match modes occurs. If the counter resets to zero before reaching the value in OCxR, the state of the OCx pin remains unchanged.

12.3 Dual Output Compare Match Mode

When control bits $O C M<2: 0>(O C x C O N<2: 0>)=100$ or 101 , the selected output compare channel is configured for one of two Dual Output Compare modes, which are:

- Single Output Pulse mode
- Continuous Output Pulse mode

12.3.1 SINGLE PULSE MODE

For the user to configure the module for the generation of a single output pulse, the following steps are required (assuming timer is off):

- Determine instruction cycle time TcY.
- Calculate desired pulse width value based on TcY.
- Calculate time to start pulse from timer start value of 0×0000.
- Write pulse width start and stop times into OCxR and OCxRS compare registers (x denotes channel 1, 2).
- Set timer period register to value equal to, or greater than, value in OCxRS compare register.
- Set OCM<2:0> = 100 .
- Enable timer, TON (TxCON<15>) = 1 .

To initiate another single pulse, issue another write to set $O C M<2: 0>=100$.

12.3.2 CONTINUOUS PULSE MODE

For the user to configure the module for the generation of a continuous stream of output pulses, the following steps are required:

- Determine instruction cycle time TcY.
- Calculate desired pulse value based on Tcy.
- Calculate timer to start pulse width from timer start value of 0×0000.
- Write pulse width start and stop times into OCxR and OCxRS (x denotes channel 1, 2) compare registers, respectively.
- Set timer period register to value equal to, or greater than, value in OCxRS compare register.
- Set OCM<2:0> = 101 .
- Enable timer, TON (TxCON<15>) = 1 .

12.4 Simple PWM Mode

When control bits $\mathrm{OCM}<2: 0>(\mathrm{OCxCON}<2: 0>)=110$ or 111 , the selected output compare channel is configured for the PWM mode of operation. When configured for the PWM mode of operation, OCxR is the main latch (read-only) and OCxRS is the secondary latch. This enables glitchless PWM transitions.

The user must perform the following steps in order to configure the output compare module for PWM operation:

1. Set the PWM period by writing to the appropriate period register.
2. Set the PWM duty cycle by writing to the OCxRS register.
3. Configure the output compare module for PWM operation.
4. Set the TMRx prescale value and enable the Timer, TON (TxCON<15>) $=1$.

12.4.1 INPUT PIN FAULT PROTECTION FOR PWM

When control bits $\mathrm{OCM}<2: 0>(\mathrm{OCxCON}<2: 0>)=111$, the selected output compare channel is again configured for the PWM mode of operation, with the additional feature of input fault protection. While in this mode, if a logic ' 0 ' is detected on the OCFA/B pin, the respective PWM output pin is placed in the high-impedance input state. The OCFLT bit ($O C \times C O N<4>$) indicates whether a Fault condition has occurred. This state will be maintained until both of the following events have occurred:

- The external Fault condition has been removed.
- The PWM mode has been re-enabled by writing to the appropriate control bits.

dsPIC30F2010

12.4.2 PWM PERIOD

The PWM period is specified by writing to the PRx register. The PWM period can be calculated using Equation 12-1

EQUATION 12-1: PWM PERIOD

$$
\begin{aligned}
\mathrm{PWM} \text { period }= & {[(\mathrm{PRx})+1] \cdot 4 \cdot \text { Tosc } \bullet } \\
& (\mathrm{TMRx} \text { prescale value })
\end{aligned}
$$

PWM frequency is defined as 1 / [PWM period].
When the selected TMRx is equal to its respective period register, PRx, the following four events occur on the next increment cycle:

- TMRx is cleared.
- The OCx pin is set.
- Exception 1: If PWM duty cycle is 0×0000, the OCx pin will remain low.
- Exception 2: If duty cycle is greater than PRx, the pin will remain high.
- The PWM duty cycle is latched from OCxRS into OCxR.
- The corresponding timer interrupt flag is set.

See Figure 12-1 for key PWM period comparisons. Timer3 is referred to in the figure for clarity.

12.5 Output Compare Operation During CPU Sleep Mode

When the CPU enters the Sleep mode, all internal clocks are stopped. Therefore, when the CPU enters the Sleep state, the output compare channel will drive the pin to the active state that was observed prior to entering the CPU Sleep state.
For example, if the pin was high when the CPU entered the Sleep state, the pin will remain high. Likewise, if the pin was low when the CPU entered the Sleep state, the pin will remain low. In either case, the output compare module will resume operation when the device wakes up.

12.6 Output Compare Operation During CPU Idle Mode

When the CPU enters the Idle mode, the output compare module can operate with full functionality.

The output compare channel will operate during the CPU Idle mode if the OCSIDL bit ($O C x C O N<13>$) is at logic ' 0 ' and the selected time base (Timer2 or Timer3) is enabled and the TSIDL bit of the selected timer is set to logic ' 0 '.

FIGURE 12-1: PWM OUTPUT TIMING

12.7 Output Compare Interrupts

The output compare channels have the ability to generate an interrupt on a compare match, for whichever Match mode has been selected.
For all modes except the PWM mode, when a compare event occurs, the respective interrupt flag (OCxIF) is asserted and an interrupt will be generated, if enabled. The OCxIF bit is located in the corresponding IFS status register, and must be cleared in software. The interrupt is enabled via the respective compare interrupt enable (OCxIE) bit, located in the corresponding IEC Control register.

For the PWM mode, when an event occurs, the respective timer interrupt flag (T2IF or T3IF) is asserted and an interrupt will be generated, if enabled. The IF bit is located in the IFS0 status register, and must be cleared in software. The interrupt is enabled via the respective timer interrupt enable bit (T2IE or T3IE), located in the IECO Control register. The output compare interrupt flag is never set during the PWM mode of operation.

dsPIC30F2010

TABLE 12-1: OUTPUT COMPARE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Rese	State	
OC1RS	0180	Output Compare 1 Master Register																0000	0000	0000	0000
OC1R	0182	Output Compare 1 Slave Register																0000	0000	0000	0000
OC1CON	0184	-	OCFRZ	OCSIDL	-	-	-	-	-	-	-	-	OCFLT1	OCTSEL1		OCM<2:0>		0000	0000	0000	0000
OC2RS	0186	Output Compare 2 Master Register																0000	000	0000	0000
OC2R	0188	Output Compare 2 Slave Register																0000	0000	0000	0000
OC2CON	018A	-	OCFRZ	OCSIDL	-	-	-	-	-	-	-	-	OCFLT2	OCTSEL2	OCM<2:0>			0000	0000	0000	0000
Legend: $u=$ uninitialized bit																					

Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

dsPIC30F2010

13.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046)

This section describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining motor positioning data. Incremental encoders are very useful in motor control applications.

The Quadrature Encoder Interface (QEI) is a key feature requirement for several motor control applications, such as Switched Reluctance (SR) and AC Induction Motor (ACIM). The operational features of the QEI are, but not limited to:

- Three input channels for two phase signals and index pulse
- 16-bit up/down position counter
- Count direction status
- Position Measurement (x2 and x4) mode
- Programmable digital noise filters on inputs
- Alternate 16-bit Timer/Counter mode
- Quadrature Encoder Interface interrupts

These operating modes are determined by setting the appropriate bits QEIM<2:0> (QEICON<10:8>). Figure 13-1 depicts the Quadrature Encoder Interface block diagram.

FIGURE 13-1: QUADRATURE ENCODER INTERFACE BLOCK DIAGRAM

dsPIC30F2010

13.1 Quadrature Encoder Interface Logic

A typical incremental (a.k.a. optical) encoder has three outputs: Phase A, Phase B, and an index pulse. These signals are useful and often required in position and speed control of ACIM and SR motors.
The two channels, Phase A (QEA) and Phase B (QEB), have a unique relationship. If Phase A leads Phase B, then the direction (of the motor) is deemed positive or forward. If Phase A lags Phase B, then the direction (of the motor) is deemed negative or reverse.
A third channel, termed index pulse, occurs once per revolution and is used as a reference to establish an absolute position. The index pulse coincides with Phase A and Phase B, both low.

13.2 16-bit Up/Down Position Counter Mode

The 16-bit Up/Down Counter counts up or down on every count pulse, which is generated by the difference of the Phase A and Phase B input signals. The counter acts as an integrator, whose count value is proportional to position. The direction of the count is determined by the UPDN signal, which is generated by the Quadrature Encoder Interface Logic.

13.2.1 POSITION COUNTER ERROR CHECKING

Position count error checking in the QEI is provided for and indicated by the CNTERR bit (QEICON<15>). The error checking only applies when the position counter is configured for Reset on the Index Pulse modes (QEIM<2:0> = ' 110 ' or ' 100 '). In these modes, the contents of the POSCNT register is compared with the values ($0 x F F F F$ or MAXCNT +1 , depending on direction). If these values are detected, an error condition is generated by setting the CNTERR bit and a QEI count error interrupt is generated. The QEI count error interrupt can be disabled by setting the CEID bit (DFLTCON $<8>$). The position counter continues to count encoder edges after an error has been detected. The POSCNT register continues to count up/down until a natural rollover/underflow. No interrupt is generated for the natural rollover/underflow event. The CNTERR bit is a read/write bit and reset in software by the user.

13.2.2 POSITION COUNTER RESET

The Position Counter Reset Enable bit, POSRES (QEI<2>) controls whether the position counter is reset when the index pulse is detected. This bit is only applicable when QEIM<2:0> = ' 100 ' or ' 110 '.
If the POSRES bit is set to ' 1 ', then the position counter is reset when the index pulse is detected. If the POSRES bit is set to ' 0 ', then the position counter is not reset when the index pulse is detected. The position counter will continue counting up or down, and will be reset on the rollover or underflow condition.

When selecting the INDX signal to reset the position counter (POSCNT), the user has to specify the states on QEA and QEB input pins. These states have to be matched in order for a reset to occur. These states are selected by the $\mathrm{IMV}<1: 0>$ bit in the DFLTCON < 10:9> register.
The $I M V<1: 0>$ (Index Match Value) bit allows the user to specify the state of the QEA and QEB input pins during an index pulse when the POSCNT register is to be reset.
In 4X Quadrature Count Mode:
IMV1 = Required state of phase B input signal for match on index pulse
IMVO = Required state of phase A input signal for match on index pulse
In 2X Quadrature Count Mode:
IMV1 = Selects phase input signal for index state match ($0=$ Phase A, $1=$ Phase B)
IMVO = Required state of the selected phase input signal for match on index pulse
The interrupt is still generated on the detection of the index pulse and not on the position counter overflow/ underflow.

13.2.3 COUNT DIRECTION STATUS

As mentioned in the previous section, the QEI logic generates an UPDN signal, based upon the relationship between Phase A and Phase B. In addition to the output pin, the state of this internal UPDN signal is supplied to a SFR bit UPDN (QEICON<11>) as a readonly bit.

Note: QEI pins are multiplexed with analog inputs. User must insure that all QEI associated pins are set as digital inputs in the ADPCFG register.

dsPIC30F2010

13.3 Position Measurement Mode

There are two Measurement modes which are supported and are termed x2 and x4. These modes are selected by the QEIM<2:0> mode select bits located in SFR QEICON<10:8>.
When control bits QEIM<2:0> = 100 or 101, the x2 Measurement mode is selected and the QEI logic only looks at the Phase A input for the position counter increment rate. Every rising and falling edge of the Phase A signal causes the position counter to be incremented or decremented. The Phase B signal is still utilized for the determination of the counter direction, just as in the $x 4$ mode.
Within the x2 Measurement mode, there are two variations of how the position counter is reset:

1. Position counter reset by detection of index pulse, QEIM<2:0> = 100 .
2. Position counter reset by match with MAXCNT, QEIM<2:0> = 101.

When control bits QEIM<2:0> = 110 or 111, the $\times 4$ Measurement mode is selected and the QEI logic looks at both edges of the Phase A and Phase B input signals. Every edge of both signals causes the position counter to increment or decrement.

Within the x4 Measurement mode, there are two variations of how the position counter is reset:

1. Position counter reset by detection of index pulse, QEIM<2:0> = 110 .
2. Position counter reset by match with MAXCNT, QEIM<2:0> = 111 .
The x 4 Measurement mode provides for finer resolution data (more position counts) for determining motor position.

13.4 Programmable Digital Noise Filters

The digital noise filter section is responsible for rejecting noise on the incoming capture or quadrature signals. Schmitt Trigger inputs and a three-clock cycle delay filter combine to reject low level noise and large, short duration noise spikes that typically occur in noise prone applications, such as a motor system.
The filter ensures that the filtered output signal is not permitted to change until a stable value has been registered for three consecutive clock cycles.
For the QEA, QEB and INDX pins, the clock divide frequency for the digital filter is programmed by bits QECK<2:0> (DFLTCON<6:4>) and are derived from the base instruction cycle Tcy.
To enable the filter output for channels QEA, QEB and INDX, the QEOUT bit must be ' 1 '. The filter network for all channels is disabled on POR and BOR.

13.5 Alternate 16-bit Timer/Counter

When the QEI module is not configured for the QEI mode QEIM<2:0> = 001, the module can be configured as a simple 16-bit timer/counter. The setup and control of the auxiliary timer is accomplished through the QEICON SFR register. This timer functions identically to Timer1. The QEA pin is used as the timer clock input.

When configured as a timer, the POSCNT register serves as the Timer Count Register and the MAXCNT register serves as the Period Register. When a timer/ period register match occur, the QEI interrupt flag will be asserted.

The only exception between the general purpose timers and this timer is the added feature of external Up/ Down input select. When the UPDN pin is asserted high, the timer will increment up. When the UPDN pin is asserted low, the timer will be decremented.

Note: Changing the Operational mode (i.e., from QEI to Timer or vice versa), will not affect the Timer/Position Count Register contents.
The UPDN control/status bit (QEICON<11>) can be used to select the count direction state of the Timer register. When UPDN = 1, the timer will count up. When UPDN $=0$, the timer will count down.
In addition, control bit UPDN_SRC (QEICON<0>) determines whether the timer count direction state is based on the logic state, written into the UPDN control/ status bit (QEICON<11>), or the QEB pin state. When UPDN_SRC $=1$, the timer count direction is controlled from the QEB pin. Likewise, when UPDN_SRC $=0$, the timer count direction is controlled by the UPDN bit.

Note: This Timer does not support the External Asynchronous Counter mode of operation. If using an external clock source, the clock will automatically be synchronized to the internal instruction cycle.

13.6 QEI Module Operation During CPU Sleep Mode

13.6.1 QEI OPERATION DURING CPU SLEEP MODE

The QEI module will be halted during the CPU Sleep mode.

13.6.2 TIMER OPERATION DURING CPU SLEEP MODE

During CPU Sleep mode, the timer will not operate, because the internal clocks are disabled.

dsPIC30F2010

13.7 QEI Module Operation During CPU Idle Mode

Since the QEI module can function as a quadrature encoder interface, or as a 16 -bit timer, the following section describes operation of the module in both modes.

13.7.1 QEI OPERATION DURING CPU IDLE MODE

When the CPU is placed in the Idle mode, the QEI module will operate if the QEISIDL bit (QEICON<13>) $=0$. This bit defaults to a logic 'o' upon executing POR and BOR. For halting the QEI module during the CPU Idle mode, QEISIDL should be set to ' 1 '.

13.7.2 TIMER OPERATION DURING CPU IDLE MODE

When the CPU is placed in the Idle mode and the QEI module is configured in the 16 -bit Timer mode, the 16-bit timer will operate if the QEISIDL bit (QEICON<13>) $=0$. This bit defaults to a logic ' 0 ' upon executing POR and BOR. For halting the timer module during the CPU Idle mode, QEISIDL should be set to ' 1 '.

If the QEISIDL bit is cleared, the timer will function normally, as if the CPU Idle mode had not been entered.

13.8 Quadrature Encoder Interface Interrupts

The quadrature encoder interface has the ability to generate an interrupt on occurrence of the following events:

- Interrupt on 16-bit up/down position counter rollover/underflow
- Detection of qualified index pulse, or if CNTERR bit is set
- Timer period match event (overflow/underflow)
- Gate accumulation event

The QEI interrupt flag bit, QEIIF, is asserted upon occurrence of any of the above events. The QEIIF bit must be cleared in software. QEIIF is located in the IFS2 status register.
Enabling an interrupt is accomplished via the respective enable bit, QEIIE. The QEIIE bit is located in the IEC2 Control register.
TABLE 13-1: QEI REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset	State	
QEICON	0122	CNTERR	-	QEISIDL	INDX	UPDN	QEIM2	QEIM1	QEIM0	SWPAB	-	TQGATE	TQCKPS1	TQCKPSO	POSRES	TQCS	UPDN_SRC	0000	0000	0000	0000
DFLTCON	0124	-	-	-	-	-	IMV1	imvo	CEID	QEOUT	QECK2	QECK1	QECKO	-	-	-	-	0000	0000	0000	0000
POSCNT	0126																	0000	0000	0000	0000
MAXCNT	0128	Position Counter<15:0>																1111	1111	1111	1111
Legend: $u=$ uninitialized bit																					
Note:	Ref	ds	C30F	mily	Referen	ce Ma	anual"	7)	SC	S	iste	fields.								

dsPIC30F2010

NOTES:

dsPIC30F2010

14.0 MOTOR CONTROL PWM MODULE

> Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046).

This module simplifies the task of generating multiple, synchronized Pulse Width Modulated (PWM) outputs. In particular, the following power and motion control applications are supported by the PWM module:

- Three Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)

The PWM module has the following features:

- 6 PWM I/O pins with 3 duty cycle generators
- Up to 16 -bit resolution
- ‘On-the-Fly’ PWM frequency changes
- Edge and Center-Aligned Output modes
- Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation
- 'Special Event' comparator for scheduling other peripheral events
- $\overline{\text { FLTA }}$ pins to optionally drive each of the PWM output pins to a defined state
This module contains 3 duty cycle generators, numbered 1 through 3 . The module has 6 PWM output pins, numbered PWM1H/PWM1L through PWM3H/PWM3L. The six I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.
A simplified block diagram of the Motor Control PWM modules is shown in Figure 14-1.
The PWM module allows several modes of operation which are beneficial for specific power control applications.

dsPIC30F2010

FIGURE 14-1: PWM BLOCK DIAGRAM

Note: Details of PWM Generator \#1 and \#2 not shown for clarity.

dsPIC30F2010

14.1 PWM Time Base

The PWM time base is provided by a 15 -bit timer with a prescaler and postscaler. The time base is accessible via the PTMR SFR. PTMR<15> is a read-only status bit, PTDIR, that indicates the present count direction of the PWM time base. If PTDIR is cleared, PTMR is counting upwards. If PTDIR is set, PTMR is counting downwards. The PWM time base is configured via the PTCON SFR. The time base is enabled/disabled by setting/clearing the PTEN bit in the PTCON SFR. PTMR is not cleared when the PTEN bit is cleared in software.

The PTPER SFR sets the counting period for PTMR. The user must write a 15 -bit value to PTPER<14:0>. When the value in PTMR<14:0> matches the value in PTPER<14:0>, the time base will either Reset to ' 0 ', or reverse the count direction on the next occurring clock cycle. The action taken depends on the Operating mode of the time base.

Note: If the period register is set to 0×0000, the timer will stop counting, and the interrupt and the special event trigger will not be generated, even if the special event value is also 0×0000. The module will not update the period register if it is already at 0×0000; therefore, the user must disable the module in order to update the period register.
The PWM time base can be configured for four different modes of operation:

- Free Running mode
- Single Shot mode
- Continuous Up/Down Count mode
- Continuous Up/Down Count mode with interrupts for double updates
These four modes are selected by the PTMOD<1:0> bits in the PTCON SFR. The Up/Down Counting modes support center-aligned PWM generation. The Single Shot mode allows the PWM module to support pulse control of certain Electronically Commutative Motors (ECMs).

The interrupt signals generated by the PWM time base depend on the mode selection bits (PTMOD $<1: 0>$) and the postscaler bits (PTOPS<3:0>) in the PTCON SFR.

14.1.1 FREE RUNNING MODE

In the Free Running mode, the PWM time base counts upwards until the value in the Time Base Period register (PTPER) is matched. The PTMR register is reset on the following input clock edge and the time base will continue to count upwards as long as the PTEN bit remains set.
When the PWM time base is in the Free Running mode (PTMOD<1:0> = 00), an interrupt event is generated each time a match with the PTPER register occurs and the PTMR register is Reset to zero. The postscaler selection bits may be used in this mode of the timer to reduce the frequency of the interrupt events.

14.1.2 SINGLE-SHOT MODE

In the Single-Shot Counting mode, the PWM time base begins counting upwards when the PTEN bit is set. When the value in the PTMR register matches the PTPER register, the PTMR register will be reset on the following input clock edge and the PTEN bit will be cleared by the hardware to halt the time base.

When the PWM time base is in the Single-Shot mode (PTMOD $<1: 0>=01$), an interrupt event is generated when a match with the PTPER register occurs, the PTMR register is reset to zero on the following input clock edge, and the PTEN bit is cleared. The postscaler selection bits have no effect in this mode of the timer.

14.1.3 CONTINUOUS UP/DOWN COUNTING MODES

In the Continuous Up/Down Counting modes, the PWM time base counts upwards until the value in the PTPER register is matched. The timer will begin counting downwards on the following input clock edge. The PTDIR bit in the PTCON SFR is read-only and indicates the counting direction The PTDIR bit is set when the timer counts downwards.

In the Up/Down Counting mode (PTMOD<1:0> = 10), an interrupt event is generated each time the value of the PTMR register becomes zero and the PWM time base begins to count upwards. The postscaler selection bits may be used in this mode of the timer to reduce the frequency of the interrupt events.

dsPIC30F2010

14.1.4 DOUBLE UPDATE MODE

In the Double Update mode (PTMOD<1:0> = 11), an interrupt event is generated each time the PTMR register is equal to zero, as well as each time a period match occurs. The postscaler selection bits have no effect in this mode of the timer.

The Double Update mode provides two additional functions to the user. First, the control loop bandwidth is doubled because the PWM duty cycles can be updated, twice per period. Second, asymmetrical cen-ter-aligned PWM waveforms can be generated, which are useful for minimizing output waveform distortion in certain motor control applications.

Note: Programming a value of 0×0001 in the period register could generate a continuous interrupt pulse, and hence, must be avoided.

14.1.5 PWM TIME BASE PRESCALER

The input clock to PTMR (Fosc/4), has prescaler options of 1:1, 1:4, 1:16 or 1:64, selected by control bits PTCKPS $<1: 0>$ in the PTCON SFR. The prescaler counter is cleared when any of the following occurs:

- a write to the PTMR register
- a write to the PTCON register
- any device Reset

The PTMR register is not cleared when PTCON is written.

14.1.6 PWM TIME BASE POSTSCALER

The match output of PTMR can optionally be postscaled through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling).
The postscaler counter is cleared when any of the following occurs:

- a write to the PTMR register
- a write to the PTCON register
- any device Reset

The PTMR register is not cleared when PTCON is written.

14.2 PWM Period

PTPER is a 15 -bit register and is used to set the counting period for the PWM time base. PTPER is a doublebuffered register. The PTPER buffer contents are loaded into the PTPER register at the following instances:

- Free Running and Single Shot modes: When the PTMR register is reset to zero after a match with the PTPER register.
- Up/Down Counting modes: When the PTMR register is zero.
The value held in the PTPER buffer is automatically loaded into the PTPER register when the PWM time base is disabled (PTEN = 0).
The PWM period can be determined using Equation 14-1:

EQUATION 14-1: PWM PERIOD

$$
\mathrm{TPWM}=\frac{\mathrm{TCY} \bullet(\mathrm{PTPER}+1)}{(\mathrm{PTMR} \text { Prescale Value })}
$$

If the PWM time base is configured for one of the Up/ Down Count modes, the PWM period is found using Equation 14-2.

EQUATION 14-2: PWM PERIOD (UP/DOWN COUNT MODE)

$$
\mathrm{TPWM}=\frac{\mathrm{TCY} \bullet 2 \bullet(\mathrm{PTPER}+0.75)}{(\mathrm{PTMR} \text { Prescale Value })}
$$

The maximum resolution (in bits) for a given device oscillator and PWM frequency can be determined using Equation 14-3:

EQUATION 14-3: PWM RESOLUTION

$$
\text { Resolution }=\frac{\log (2 \bullet \mathrm{TPWM} / \mathrm{TCY})}{\log (2)}
$$

dsPIC30F2010

14.3 Edge-Aligned PWM

Edge-aligned PWM signals are produced by the module when the PWM time base is in the Free Running or Single Shot mode. For edge-aligned PWM outputs, the output has a period specified by the value in PTPER and a duty cycle specified by the appropriate duty cycle register (see Figure 14-2). The PWM output is driven active at the beginning of the period ($\mathrm{PTMR}=0$) and is driven inactive when the value in the duty cycle register matches PTMR.

If the value in a particular duty cycle register is zero, then the output on the corresponding PWM pin will be inactive for the entire PWM period. In addition, the output on the PWM pin will be active for the entire PWM period if the value in the duty cycle register is greater than the value held in the PTPER register.

FIGURE 14-2: EDGE-ALIGNED PWM

14.4 Center-Aligned PWM

Center-aligned PWM signals are produced by the module when the PWM time base is configured in an Up/ Down Counting mode (see Figure 14-3).

The PWM compare output is driven to the active state when the value of the duty cycle register matches the value of PTMR and the PWM time base is counting downwards (PTDIR = 1). The PWM compare output is driven to the inactive state when the PWM time base is counting upwards (PTDIR $=0$) and the value in the PTMR register matches the duty cycle value.
If the value in a particular duty cycle register is zero, then the output on the corresponding PWM pin will be inactive for the entire PWM period. In addition, the output on the PWM pin will be active for the entire PWM period if the value in the duty cycle register is equal to the value held in the PTPER register.

FIGURE 14-3: CENTER-ALIGNED PWM

14.5 PWM Duty Cycle Comparison Units

There are four 16-bit Special Function Registers (PDC1, PDC2, PDC3 and PDC4) used to specify duty cycle values for the PWM module.
The value in each duty cycle register determines the amount of time that the PWM output is in the active state. The duty cycle registers are 16 bits wide. The LSb of a duty cycle register determines whether the PWM edge occurs in the beginning. Thus, the PWM resolution is effectively doubled.

dsPIC30F2010

14.5.1 DUTY CYCLE REGISTER BUFFERS

The four PWM duty cycle registers are double-buffered to allow glitchless updates of the PWM outputs. For each duty cycle, there is a duty cycle register that is accessible by the user and a second duty cycle register that holds the actual compare value used in the present PWM period.
For edge-aligned PWM output, a new duty cycle value will be updated whenever a match with the PTPER register occurs and PTMR is reset. The contents of the duty cycle buffers are automatically loaded into the duty cycle registers when the PWM time base is disabled (PTEN $=0$) and the UDIS bit is cleared in PWMCON2.
When the PWM time base is in the Up/Down Counting mode, new duty cycle values are updated when the value of the PTMR register is zero and the PWM time base begins to count upwards. The contents of the duty cycle buffers are automatically loaded into the duty cycle registers when the PWM time base is disabled (PTEN = 0).
When the PWM time base is in the Up/Down Counting mode with double updates, new duty cycle values are updated when the value of the PTMR register is zero, and when the value of the PTMR register matches the value in the PTPER register. The contents of the duty cycle buffers are automatically loaded into the duty cycle registers when the PWM time base is disabled (PTEN = 0).

14.6 Complementary PWM Operation

In the Complementary mode of operation, each pair of PWM outputs is obtained by a complementary PWM signal. A dead time may be optionally inserted during device switching, when both outputs are inactive for a short period (Refer to Section 14.7 "Dead-Time Generators").
In Complementary mode, the duty cycle comparison units are assigned to the PWM outputs as follows:

- PDC1 register controls PWM1H/PWM1L outputs
- PDC2 register controls PWM2H/PWM2L outputs
- PDC3 register controls PWM3H/PWM3L outputs

The Complementary mode is selected for each PWM I/O pin pair by clearing the appropriate PMODx bit in the PWMCON1 SFR. The PWM I/O pins are set to Complementary mode by default upon a device Reset.

14.7 Dead-Time Generators

Dead-time generation may be provided when any of the PWM I/O pin pairs are operating in the Complementary Output mode. The PWM outputs use PushPull drive circuits. Due to the inability of the power output devices to switch instantaneously, some amount of time must be provided between the turn off event of one PWM output in a complementary pair and the turn on event of the other transistor.

14.7.1 DEAD-TIME GENERATORS

Each complementary output pair for the PWM module has a 6-bit down counter that is used to produce the dead-time insertion. As shown in Figure 14-4, the dead-time unit has a rising and falling edge detector connected to the duty cycle comparison output.

14.7.2 DEAD-TIME RANGES

The amount of dead time provided by the dead-time unit is selected by specifying the input clock prescaler value and a 6 -bit unsigned value.
Four input clock prescaler selections have been provided to allow a suitable range of dead times, based on the device operating frequency. The dead-time clock prescaler value is selected using the DTAPS $<1: 0>$ and DTBPS $<1: 0>$ control bits in the DTCON1 SFR. One of four clock prescaler options (TCY, 2TCY, 4TCY or 8TCY) is selected for the dead-time value.
After the prescaler value is selected, the dead time is adjusted by loading a 6 -bit unsigned value into the DTCON1 SFR.

The dead-time unit prescaler is cleared on the following events:

- On a load of the down timer due to a duty cycle comparison edge event.
- On a write to the DTCON1 register.
- On any device Reset.

Note: The user should not modify the DTCON1 values while the PWM module is operating (PTEN = 1). Unexpected results may occur.

FIGURE 14-4: DEAD-TIME TIMING DIAGRAM

14.8 Independent PWM Output

An independent PWM Output mode is required for driving certain types of loads. A particular PWM output pair is in the Independent Output mode when the corresponding PMOD bit in the PWMCON1 register is set. No dead-time control is implemented between adjacent PWM I/O pins when the module is operating in the Independent mode and both I/O pins are allowed to be active simultaneously.
In the Independent mode, each duty cycle generator is connected to both of the PWM I/O pins in an output pair. By using the associated duty cycle register and the appropriate bits in the OVDCON register, the user may select the following signal output options for each PWM I/O pin operating in the Independent mode:

- I/O pin outputs PWM signal
- I/O pin inactive
- I/O pin active

14.9 Single Pulse PWM Operation

The PWM module produces single pulse outputs when the PTCON control bits PTMOD $<1: 0>=10$. Only edgealigned outputs may be produced in the Single Pulse mode. In Single Pulse mode, the PWM I/O pin(s) are driven to the active state when the PTEN bit is set. When a match with a duty cycle register occurs, the PWM I/O pin is driven to the inactive state. When a match with the PTPER register occurs, the PTMR register is cleared, all active PWM I/O pins are driven to the inactive state, the PTEN bit is cleared, and an interrupt is generated.

14.10 PWM Output Override

The PWM output override bits allow the user to manually drive the PWM I/O pins to specified logic states, independent of the duty cycle comparison units.
All control bits associated with the PWM output override function are contained in the OVDCON register. The upper half of the OVDCON register contains six bits, $\mathrm{POVDxH}<3: 1>$ and $\mathrm{POVDxL}<3: 1>$, that determine which PWM I/O pins will be overridden. The lower half of the OVDCON register contains six bits, POUTxH<3:1> and POUTxL<3:1>, that determine the state of the PWM I/O pins when a particular output is overridden via the POVD bits.

14.10.1 COMPLEMENTARY OUTPUT MODE

When a PWMxL pin is driven active via the OVDCON register, the output signal is forced to be the complement of the corresponding PWMxH pin in the pair. Dead-time insertion is still performed when PWM channels are overridden manually.

14.10.2 OVERRIDE SYNCHRONIZATION

If the OSYNC bit in the PWMCON2 register is set, all output overrides performed via the OVDCON register are synchronized to the PWM time base. Synchronous output overrides occur at the following times:

- Edge-Aligned mode, when PTMR is zero.
- Center-Aligned modes, when PTMR is zero and when the value of PTMR matches PTPER.

dsPIC30F2010

14.11 PWM Output and Polarity Control

There are three device Configuration bits associated with the PWM module that provide PWM output pin control:

- HPOL Configuration bit
- LPOL Configuration bit
- PWMPIN Configuration bit

These three bits in the FPORBOR Configuration register (see Section 21) work in conjunction with the three PWM enable bits ($\mathrm{PWMEN}<3: 1>$) located in the PWMCON1 SFR. The Configuration bits and PWM enable bits ensure that the PWM pins are in the correct states after a device Reset occurs. The PWMPIN configuration fuse allows the PWM module outputs to be optionally enabled on a device Reset. If PWMPIN $=0$, the PWM outputs will be driven to their inactive states at Reset. If PWMPIN = 1 (default), the PWM outputs will be tri-stated. The HPOL bit specifies the polarity for the PWMxH outputs, whereas the LPOL bit specifies the polarity for the PWMxL outputs.

14.11.1 OUTPUT PIN CONTROL

The PEN $<3: 1>\mathrm{H}$ and $\mathrm{PEN}<3: 1>\mathrm{L}$ control bits in the PWMCON1 SFR enable each high PWM output pin and each low PWM output pin, respectively. If a particular PWM output pin not enabled, it is treated as a general purpose I/O pin.

14.12 PWM FLTA Pins

There is one $\overline{\text { FLTA }}$ pin (FLTA) associated with the PWM module. When asserted, this pin can optionally drive each of the PWM I/O pins to a defined state.

14.12.1 FAULT PIN ENABLE BITS

The FLTACON SFR has 4 control bits that determine whether a particular pair of PWM I/O pins is to be controlled by the FLTA input pin. To enable a specific PWM I/O pin pair for FLTA overrides, the corresponding bit should be set in the FLTACON register.
If all enable bits are cleared in the FLTACON register, then the FLTA input pin has no effect on the PWM module and the pin may be used as a general purpose interrupt or I/O pin.

Note: The FLTA pin logic can operate independent of the PWM logic. If all the enable bits in the FLTACON register are cleared, then the FLTA pin(s) could be used as general purpose interrupt pin(s). Each FLTA pin has an interrupt vector, interrupt flag bit and interrupt priority bits associated with it.

14.12.2 FAULT STATES

The FLTACON special function register has 8 bits that determine the state of each PWM I/O pin when it is overridden by a FLTA input. When these bits are
cleared, the PWM I/O pin is driven to the inactive state. If the bit is set, the PWM I/O pin will be driven to the active state. The active and inactive states are referenced to the polarity defined for each PWM I/O pin (HPOL and LPOL polarity control bits).

14.12.3 FAULT INPUT MODES

The FLTA input pin has two modes of operation:

- Latched Mode: When the FLTA pin is driven low, the PWM outputs will go to the states defined in the FLTACON register. The PWM outputs will remain in this state until the FLTA pin is driven high and the corresponding interrupt flag has been cleared in software. When both of these actions have occurred, the PWM outputs will return to normal operation at the beginning of the next PWM cycle or half-cycle boundary. If the interrupt flag is cleared before the FLTA condition ends, the PWM module will wait until the FLTA pin is no longer asserted to restore the outputs.
- Cycle-by-Cycle Mode: When the FLTA input pin is driven low, the PWM outputs remain in the defined FLTA states for as long as the FLTA pin is held low. After the FLTA pin is driven high, the PWM outputs return to normal operation at the beginning of the following PWM cycle or half-cycle boundary.
The Operating mode for the $\overline{\text { FLTA }}$ input pin is selected using the FLTAM control bit in the FLTACON Special Function Register.
The FLTA pin can be controlled manually in software.

14.13 PWM Update Lockout

For a complex PWM application, the user may need to write up to four duty cycle registers and the time base period register, PTPER, at a given time. In some applications, it is important that all buffer registers be written before the new duty cycle and period values are loaded for use by the module.
The PWM update lockout feature is enabled by setting the UDIS control bit in the PWMCON2 SFR. The UDIS bit affects all duty cycle buffer registers and the PWM time base period buffer, PTPER. No duty cycle changes or period value changes will have effect while UDIS $=1$.

dsPIC30F2010

14.14 PWM Special Event Trigger

The PWM module has a special event trigger that allows A/D conversions to be synchronized to the PWM time base. The A/D sampling and conversion time may be programmed to occur at any point within the PWM period. The special event trigger allows the user to minimize the delay between the time when A / D conversion results are acquired, and the time when the duty cycle value is updated.
The PWM special event trigger has an SFR named SEVTCMP, and five control bits to control its operation. The PTMR value for which a special event trigger should occur is loaded into the SEVTCMP register. When the PWM time base is in an Up/Down Counting mode, an additional control bit is required to specify the counting phase for the special event trigger. The count phase is selected using the SEVTDIR control bit in the SEVTCMP SFR. If the SEVTDIR bit is cleared, the special event trigger will occur on the upward counting cycle of the PWM time base. If the SEVTDIR bit is set, the special event trigger will occur on the downward count cycle of the PWM time base. The SEVTDIR control bit has no effect unless the PWM time base is configured for an Up/Down Counting mode.

14.14.1 SPECIAL EVENT TRIGGER POSTSCALER

The PWM special event trigger has a postscaler that allows a $1: 1$ to $1: 16$ postscale ratio. The postscaler is configured by writing the SEVOPS $<3: 0>$ control bits in the PWMCON2 SFR.

The special event output postscaler is cleared on the following events:

- Any write to the SEVTCMP register
- Any device Reset

14.15 PWM Operation During CPU Sleep Mode

The $\overline{\text { FLTA }} A$ and $\overline{\text { FLTA }} B$ input pins have the ability to wake the CPU from Sleep mode. The PWM module generates an interrupt if either of the FLTA pins is driven low while in Sleep.

14.16 PWM Operation During CPU Idle Mode

The PTCON SFR contains a PTSIDL control bit. This bit determines if the PWM module will continue to operate or stop when the device enters Idle mode. If PTSIDL $=0$, the module will continue to operate. If PTSIDL = 1, the module will stop operation as long as the CPU remains in Idle mode.

dsPIC30F2010

TABLE 14-1: PWM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset	State	
PTCON	01C0	PTEN	-	PTSIDL	-	-	-	-	-	PTOPS<3:0>				PTCKP	S<1:0>	PTMOD<1:0>		0000	0000		0000
PTMR	0102	PTDIR	PWM Timer Count Value															0000	0000	0000	0000
PTPER	01 C 4	-	PWM Time Base Period Register															0011	1111	1111	1111
SEVTCMP	0106	SEVTDIR	PWM Special Event Compare Register															0000	0000	0000	0000
PWMCON1	01 C 8	-	-	-	-	-	PTMOD3	PTMOD2	PTMOD1	-	PEN3H	PEN2H	PEN1H	-	PEN3L	PEN2L	PEN1L	0000	0000	0111	0111
PWMCON2	01CA	-	-	-	-		SEVOP	S<3:0>		-	-	-	-	-	-	OSYNC	UDIS	0000	0000	0000	0000
DTCON1	01cc	DTBPS<1:0>		DTB<5:0>						DTAPS<1:0>		Dead Time A Value						0000	0000	0000	0000
FlTACON	01D0	-	-	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L	FLTAM	-	-	-	-	FAEN3	FAEN2	FAEN1	0000	0000	0000	0000
OVDCON	01D4	-	-	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L	-	-	POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUTIL	0011	1111	0000	0000
PDC1	01D6	PWM Duty Cycle \#1 Register																0000	0000	0000	0000
PDC2	01D8	PWM Duty Cycle \#2 Register																0000	0000	0000	0000
PDC3	01DA	PWM Duty Cycle \#3 Register																0000	0000	0000	0000

Legend: $u=$ uninitialized bit
Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

15.0 SPI MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface. It is useful for communicating with other peripheral devices such as EEPROMs, shift registers, display drivers and A/D converters or other microcontrollers. It is compatible with Motorola's SPI and SIOP interfaces.

15.1 Operating Function Description

Each SPI module consists of a 16-bit shift register, SPIxSR (where $x=1$ or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.
The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output) and $\overline{\mathrm{SSx}}$ (active-low slave select).
In Master mode operation, SCK is a clock output, but in Slave mode, it is a clock input.
A series of eight (8) or sixteen (16) clock pulses shifts out bits from the SPIxSR to SDOx pin and simultaneously shifts in data from SDIx pin. An interrupt is generated when the transfer is complete and the corresponding interrupt flag bit (SPI1IF or SPI2IF) is set. This interrupt can be disabled through an interrupt enable bit (SPI1IE or SPI2IE).
The receive operation is double-buffered. When a complete byte is received, it is transferred from SPIxSR to SPIxBUF.

If the receive buffer is full when new data is being transferred from SPIxSR to SPIxBUF, the module will set the SPIROV bit, indicating an overflow condition. The transfer of the data from SPIxSR to SPIxBUF will not be completed and the new data will be lost. The module will not respond to SCL transitions while SPIROV is ' 1 ', effectively disabling the module until SPIxBUF is read by user software.

Transmit writes are also double-buffered. The user writes to SPIxBUF. When the master or slave transfer is completed, the contents of the shift register (SPIxSR) is moved to the receive buffer. If any transmit data has been written to the buffer register, the contents of the transmit buffer are moved to SPIxSR. The received data is thus placed in SPIxBUF and the transmit data in SPIxSR is ready for the next transfer.

[^2]In Master mode, the clock is generated by prescaling the system clock. Data is transmitted as soon as a value is written to SPIxBUF. The interrupt is generated at the middle of the transfer of the last bit.
In Slave mode, data is transmitted and received as external clock pulses appear on SCK. Again, the interrupt is generated when the last bit is latched. If $\overline{\mathrm{SSx}}$ control is enabled, then transmission and reception are enabled only when $\overline{\mathrm{SSx}}=$ low. The SDOx output will be disabled in $\overline{S S x}$ mode with $\overline{S S x}$ high.
The clock provided to the module is (FOSC/4). This clock is then prescaled by the primary ($\mathrm{PPRE}<1: 0>$) and the secondary (SPRE<2:0>) prescale factors. The CKE bit determines whether transmit occurs on transition from active clock state to Idle clock state, or vice versa. The CKP bit selects the Idle state (high or low) for the clock.

15.1.1 WORD AND BYTE COMMUNICATION

A control bit, MODE16 (SPIxCON<10>), allows the module to communicate in either 16 -bit or 8 -bit mode. 16 -bit operation is identical to 8 -bit operation, except that the number of bits transmitted is 16 instead of 8 .

The user software must disable the module prior to changing the MODE16 bit. The SPI module is reset when the MODE16 bit is changed by the user.
A basic difference between 8 -bit and 16 -bit operation is that the data is transmitted out of bit 7 of the SPIxSR for 8 -bit operation, and data is transmitted out of bit 15 of the SPIxSR for 16-bit operation. In both modes, data is shifted into bit 0 of the SPIxSR.

15.1.2 SDOx DISABLE

A control bit, DISSDO, is provided to the SPIxCON register to allow the SDOx output to be disabled. This will allow the SPI module to be connected in an input only configuration. SDO can also be used for general purpose I/O.

15.2 Framed SPI Support

The module supports a basic framed SPI protocol in Master or Slave mode. The control bit FRMEN enables framed SPI support and causes the $\overline{S S x}$ pin to perform the frame synchronization pulse (FSYNC) function. The control bit SPIFSD determines whether the $\overline{\mathrm{SSx}}$ pin is an input or an output (i.e., whether the module receives or generates the frame synchronization pulse). The frame pulse is an active-high pulse for a single SPI clock cycle. When frame synchronization is enabled, the data transmission starts only on the subsequent transmit edge of the SPI clock.

dsPIC30F2010

FIGURE 15-1: SPI BLOCK DIAGRAM

Note: $\mathrm{x}=1$ or 2 .

FIGURE 15-2: SPI MASTER/SLAVE CONNECTION

Note: $\mathrm{x}=1$ or $2, \mathrm{y}=1$ or 2 .

dsPIC30F2010

15.3 Slave Select Synchronization

The $\overline{S S x}$ pin allows a Synchronous Slave mode. The SPI must be configured in SPI Slave mode, with SSx pin control enabled (SSEN $=1$). When the $\overline{S S x}$ pin is low, transmission and reception are enabled, and the SDOx pin is driven. When SSx pin goes high, the SDOx pin is no longer driven. Also, the SPI module is resynchronized, and all counters/control circuitry are reset. Therefore, when the $\overline{S S x}$ pin is asserted low again, transmission/reception will begin at the MSb, even if $\overline{\mathrm{SSx}}$ had been de-asserted in the middle of a transmit/receive.

15.4 SPI Operation During CPU Sleep Mode

During Sleep mode, the SPI module is shut down. If the CPU enters Sleep mode while an SPI transaction is in progress, then the transmission and reception is aborted.
The transmitter and receiver will stop in Sleep mode. However, register contents are not affected by entering or exiting Sleep mode.

15.5 SPI Operation During CPU Idle Mode

When the device enters Idle mode, all clock sources remain functional. The SPISIDL bit (SPIxSTAT<13>) selects if the SPI module will stop or continue on Idle. If SPISIDL $=0$, the module will continue to operate when the CPU enters Idle mode. If SPISIDL = 1 , the module will stop when the CPU enters Idle mode.

dsPIC30F2010

TABLE 15-1: SPI1 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset	State	
SPITSTAT	0220	SPIEN	-	SPISIDL	-	-	-	-	-	-	SPIROV	-	-	-	-	SPITBF	SPIRBF	0000	0000	0000	0000
SPITCON	0222	-	FRMEN	SPIFSD	-	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPREO	0000	0000	0000	0000
SPI1BUF	0224	Transmit and Receive Buffer																0000	0000	0000	0000
Note:	Refer to "dsPIC30F Family Reference Manual"(DS70046) for descriptions of register bit fields.																				

$16.0 \quad I^{2} \mathrm{C}$ MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046).
The Inter-Integrated Circuit ($I^{2} \mathrm{C}$) module provides complete hardware support for both Slave and MultiMaster modes of the $I^{2} \mathrm{C}$ serial communication standard, with a 16-bit interface.
This module offers the following key features:

- $\mathrm{I}^{2} \mathrm{C}$ interface supporting both Master and Slave operation.
- $I^{2} C$ Slave mode supports 7 and 10 -bit address.
- $I^{2} \mathrm{C}$ Master mode supports 7 and 10 -bit address.
- $I^{2} \mathrm{C}$ port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for $\mathrm{I}^{2} \mathrm{C}$ port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- $I^{2} \mathrm{C}$ supports Multi-Master operation; detects bus collision and will arbitrate accordingly.

16.1 Operating Function Description

The hardware fully implements all the master and slave functions of the $\mathrm{I}^{2} \mathrm{C}$ Standard and Fast mode specifications, as well as 7 and 10-bit addressing.
Thus, the $\mathrm{I}^{2} \mathrm{C}$ module can operate either as a slave or a master on an $\mathrm{I}^{2} \mathrm{C}$ bus.

16.1.1 VARIOUS ${ }^{2} \mathrm{C}$ C MODES

The following types of $I^{2} \mathrm{C}$ operation are supported:

- $I^{2} \mathrm{C}$ Slave operation with 7 -bit address
- $\mathrm{I}^{2} \mathrm{C}$ Slave operation with 10 -bit address
- $\mathrm{I}^{2} \mathrm{C}$ Master operation with 7 or 10 -bit address

See the $\mathrm{I}^{2} \mathrm{C}$ programmer's model in Figure 16-1.

16.1.2 PIN CONFIGURATION IN I ${ }^{2}$ C MODE

$I^{2} \mathrm{C}$ has a 2-pin interface: pin SCL is clock and pin SDA is data.

FIGURE 16-1: PROGRAMMER'S MODEL

16.1.3 I²C REGISTERS

I2CCON and I2CSTAT are control and status registers, respectively. The I2CCON register is readable and writable. The lower 6 bits of I2CSTAT are read-only. The remaining bits of the I2CSTAT are read/write.
I2CRSR is the shift register used for shifting data, whereas I2CRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CRCV is the receive buffer, as shown in Figure 16-1. I2CTRN is the transmit register to which bytes are written during a transmit operation, as shown in Figure 16-2.

The I2CADD register holds the slave address. A status bit, ADD10, indicates 10-bit Address mode. The I2CBRG acts as the Baud Rate Generator (BRG) reload value.
In receive operations, I2CRSR and I2CRCV together form a double-buffered receiver. When I2CRSR receives a complete byte, it is transferred to I2CRCV and an interrupt pulse is generated. During transmission, the I2CTRN is not double-buffered.

Note: Following a Restart condition in 10-bit mode, the user only needs to match the first 7 -bit address.

dsPIC30F2010

FIGURE 16-2: $\quad I^{2} \mathrm{C}$ BLOCK DIAGRAM

16.2 $\quad \mathrm{I}^{2} \mathrm{C}$ Module Addresses

The I2CADD register contains the Slave mode addresses. The register is a 10-bit register.
If the A 10 M bit (I2CCON<10>) is ' 0 ', the address is interpreted by the module as a 7-bit address. When an address is received, it is compared to the 7 LSbs of the I2CADD register.
If the A10M bit is ' 1 ', the address is assumed to be a 10 -bit address. When an address is received, it will be compared with the binary value ' 11110 A9 A8' (where A9, A8 are two Most Significant bits of I2CADD). If that value matches, the next address will be compared with the Least Significant 8 bits of I2CADD, as specified in the 10-bit addressing protocol.

TABLE 16-1:	7-BIT I ${ }^{2}$ C $^{\text {TM }}$ SLAVE ADDRESSES SUPPORTED BY dsPIC30F
0×00	General call address or Start byte
$0 \times 01-0 \times 03$	Reserved
$0 \times 04-0 \times 07$	Hs mode Master codes
$0 \times 08-0 \times 77$	Valid 7-bit addresses
$0 \times 78-0 \times 7 \mathrm{~B}$	Valid 10 -bit addresses (lower 7 bits)
$0 \times 7 \mathrm{C}-0 \times 7 \mathrm{~F}$	Reserved

16.3 $\quad I^{2} C$ 7-bit Slave Mode Operation

Once enabled (I2CEN = 1), the slave module will wait for a Start bit to occur (i.e., the $\mathrm{I}^{2} \mathrm{C}$ module is 'Idle'). Following the detection of a Start bit, 8 bits are shifted into I2CRSR and the address is compared against I2CADD. In 7 -bit mode (A10M = 0), bits I2CADD<6:0> are compared against I2CRSR<7:1> and I2CRSR<0> is the $R _W$ bit. All incoming bits are sampled on the rising edge of SCL.

If an address match occurs, an acknowledgement will be sent, and the slave event interrupt flag (SI2CIF) is set on the falling edge of the ninth ($\overline{\mathrm{ACK}}$) bit. The address match does not affect the contents of the I2CRCV buffer or the RBF bit.

16.3.1 SLAVE TRANSMISSION

If the R_W bit received is a ' 1 ', then the serial port will go into Transmit mode. It will send $\overline{\mathrm{ACK}}$ on the ninth bit and then hold SCL to ' 0 ' until the CPU responds by writing to I2CTRN. SCL is released by setting the SCLREL bit, and 8 bits of data are shifted out. Data bits are shifted out on the falling edge of SCL, such that SDA is valid during SCL high (see timing diagram). The interrupt pulse is sent on the falling edge of the ninth clock pulse, regardless of the status of the $\overline{\text { ACK }}$ received from the master.

16.3.2 SLAVE RECEPTION

If the R_W bit received is a ' 0 ' during an address match, then Receive mode is initiated. Incoming bits are sampled on the rising edge of SCL. After 8 bits are received, if I2CRCV is not full or I2COV is not set, I2CRSR is transferred to I2CRCV. $\overline{\text { ACK }}$ is sent on the ninth clock.
If the RBF flag is set, indicating that I2CRCV is still holding data from a previous operation ($\mathrm{RBF}=1$), then $\overline{\mathrm{ACK}}$ is not sent; however, the interrupt pulse is generated. In the case of an overflow, the contents of the I2CRSR are not loaded into the I2CRCV.

Note: The I2CRCV will be loaded if the I2COV bit $=1$ and the RBF flag $=0$. In this case, a read of the I2CRCV was performed, but the user did not clear the state of the I2COV bit before the next receive occurred. The acknowledgement is not sent $(\overline{\mathrm{ACK}}=1)$ and the I2CRCV is updated.

$16.4 \quad I^{2} C$ 10-bit Slave Mode Operation

In 10-bit mode, the basic receive and transmit operations are the same as in the 7-bit mode. However, the criteria for address match is more complex.
The $I^{2} C$ specification dictates that a slave must be addressed for a write operation, with two address bytes following a Start bit.
The A10M bit is a control bit that signifies that the address in I2CADD is a 10-bit address rather than a 7 -bit address. The address detection protocol for the first byte of a message address is identical for 7-bit and 10 -bit messages, but the bits being compared are different.
I2CADD holds the entire 10-bit address. Upon receiving an address following a Start bit, I2CRSR $<7: 3>$ is compared against a literal '11110' (the default 10-bit address) and I2CRSR<2:1> are compared against I2CADD<9:8>. If a match occurs and if $R _W=0$, the interrupt pulse is sent. The ADD10 bit will be cleared to indicate a partial address match. If a match fails or R_W = 1, the ADD10 bit is cleared and the module returns to the Idle state.
The low byte of the address is then received and compared with I2CADD<7:0>. If an address match occurs, the interrupt pulse is generated and the ADD10 bit is set, indicating a complete 10 -bit address match. If an address match did not occur, the ADD10 bit is cleared and the module returns to the Idle state.

dsPIC30F2010

16.4.1 10-BIT MODE SLAVE TRANSMISSION

Once a slave is addressed in this fashion, with the full 10-bit address (we will refer to this state as "PRIOR_ADDR_MATCH"), the master can begin sending data bytes for a slave reception operation.

16.4.2 10-BIT MODE SLAVE RECEPTION

Once addressed, the master can generate a Repeated Start, reset the high byte of the address and set the R_W bit without generating a Stop bit, thus initiating a slave transmit operation.

16.5 Automatic Clock Stretch

In the Slave modes, the module can synchronize buffer reads and write to the master device by clock stretching.

16.5.1 TRANSMIT CLOCK STRETCHING

Both 10-bit and 7-bit Transmit modes implement clock stretching by asserting the SCLREL bit after the falling edge of the ninth clock if the TBF bit is cleared, indicating the buffer is empty.
In Slave Transmit modes, clock stretching is always performed, irrespective of the STREN bit.
Clock synchronization takes place following the ninth clock of the transmit sequence. If the device samples an $\overline{\text { ACK }}$ on the falling edge of the ninth clock, and if the TBF bit is still clear, then the SCLREL bit is automatically cleared. The SCLREL being cleared to ' 0 ' will assert the SCL line low. The user's ISR must set the SCLREL bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the I2CTRN before the master device can initiate another transmit sequence.

Note 1: If the user loads the contents of I2CTRN, setting the TBF bit before the falling edge of the ninth clock, the SCLREL bit will not be cleared and clock stretching will not occur.

2: The SCLREL bit can be set in software, regardless of the state of the TBF bit.

16.5.2 RECEIVE CLOCK STRETCHING

The STREN bit in the I2CCON register can be used to enable clock stretching in Slave Receive mode. When the STREN bit is set, the SCL pin will be held low at the end of each data receive sequence.

16.5.3 CLOCK STRETCHING DURING 7-BIT ADDRESSING (STREN = 1)

When the STREN bit is set in Slave Receive mode, the SCL line is held low when the buffer register is full. The method for stretching the SCL output is the same for both 7 and 10-bit Addressing modes.

Clock stretching takes place following the ninth clock of the receive sequence. On the falling edge of the ninth clock at the end of the ACK sequence, if the RBF bit is set, the SCLREL bit is automatically cleared, forcing the SCL output to be held low. The user's ISR must set the SCLREL bit before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the I2CRCV before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring.

Note 1: If the user reads the contents of the I2CRCV, clearing the RBF bit before the falling edge of the ninth clock, the SCLREL bit will not be cleared and clock stretching will not occur.
2: The SCLREL bit can be set in software, regardless of the state of the RBF bit. The user should be careful to clear the RBF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

16.5.4 CLOCK STRETCHING DURING 10-BIT ADDRESSING (STREN = 1)

Clock stretching takes place automatically during the addressing sequence. Because this module has a register for the entire address, it is not necessary for the protocol to wait for the address to be updated.

After the address phase is complete, clock stretching will occur on each data receive or transmit sequence as was described earlier.

dsPIC30F2010

16.6 Software Controlled Clock Stretching (STREN = 1)

When the STREN bit is ' 1 ', the SCLREL bit may be cleared by software to allow software to control the clock stretching. The logic will synchronize writes to the SCLREL bit with the SCL clock. Clearing the SCLREL bit will not assert the SCL output until the module detects a falling edge on the SCL output and SCL is sampled low. If the SCLREL bit is cleared by the user while the SCL line has been sampled low, the SCL output will be asserted (held low). The SCL output will remain low until the SCLREL bit is set, and all other devices on the $\mathrm{I}^{2} \mathrm{C}$ bus have de-asserted SCL. This ensures that a write to the SCLREL bit will not violate the minimum high time requirement for SCL.
If the STREN bit is ' 0 ', a software write to the SCLREL bit will be disregarded and have no effect on the SCLREL bit.

16.7 Interrupts

The $\mathrm{I}^{2} \mathrm{C}$ module generates two interrupt flags, MI2CIF ($I^{2} \mathrm{C}$ Master Interrupt Flag) and SI2CIF ($I^{2} \mathrm{C}$ Slave Interrupt Flag). The MI2CIF interrupt flag is activated on completion of a master message event. The SI2CIF interrupt flag is activated on detection of a message directed to the slave.

16.8 Slope Control

The $I^{2} \mathrm{C}$ standard requires slope control on the SDA and SCL signals for Fast Mode (400 kHz). The control bit, DISSLW, enables the user to disable slew rate control, if desired. It is necessary to disable the slew rate control for 1 MHz mode.

16.9 IPMI Support

The control bit IPMIEN enables the module to support Intelligent Peripheral Management Interface (IPMI). When this bit is set, the module accepts and acts upon all addresses.

16.10 General Call Address Support

The general call address can address all devices. When this address is used, all devices should, in theory, respond with an acknowledgement.
The general call address is one of eight addresses reserved for specific purposes by the $I^{2} \mathrm{C}$ protocol. It consists of all os with R_W = 0 .

The general call address is recognized when the General Call Enable (GCEN) bit is set (I2CCON $<15>=1$). Following a Start bit detection, 8 bits are shifted into I2CRSR and the address is compared with I2CADD, and is also compared with the general call address which is fixed in hardware.

If a general call address match occurs, the I2CRSR is transferred to the I2CRCV after the eighth clock, the RBF flag is set, and on the falling edge of the ninth bit ($\overline{\mathrm{ACK}}$ bit), the master event interrupt flag (MI2CIF) is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the I2CRCV to determine if the address was device specific, or a general call address.

16.11 $\mathrm{I}^{2} \mathrm{C}$ Master Support

As a Master device, six operations are supported.

- Assert a Start condition on SDA and SCL.
- Assert a Restart condition on SDA and SCL.
- Write to the I2CTRN register initiating transmission of data/address.
- Generate a Stop condition on SDA and SCL.
- Configure the $\mathrm{I}^{2} \mathrm{C}$ port to receive data.
- Generate an $\overline{\mathrm{ACK}}$ condition at the end of a received byte of data.

16.12 $\mathrm{I}^{2} \mathrm{C}$ Master Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the $\mathrm{I}^{2} \mathrm{C}$ bus will not be released.
In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the data direction bit. In this case, the data direction bit (R_W) is logic ' 0 '. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an $\overline{\text { ACK }}$ bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the data direction bit. In this case, the data direction bit (R_W) is logic ' 1 '. Thus, the first byte transmitted is a 7 -bit slave address, followed by a ' 1 ' to indicate receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an $\overline{\mathrm{ACK}}$ bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

dsPIC30F2010

16.12.1 $I^{2} \mathrm{C}$ MASTER TRANSMISSION

Transmission of a data byte, a 7-bit address or the second half of a 10-bit address is accomplished by simply writing a value to I2CTRN register. The user should only write to I2CTRN when the module is in a Wait state. This action will set the buffer full flag (TBF) and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. The Transmit Status Flag, TRSTAT (I2CSTAT<14>), indicates that a master transmit is in progress.

16.12.2 $\mathrm{I}^{2} \mathrm{C}$ MASTER RECEPTION

Master mode reception is enabled by programming the receive enable (RCEN) bit (I2CCON $<11>$). The ${ }^{2}{ }^{2} \mathrm{C}$ module must be Idle before the RCEN bit is set, otherwise the RCEN bit will be disregarded. The Baud Rate Generator begins counting, and on each rollover, the state of the SCL pin toggles, and data is shifted in to the I2CRSR on the rising edge of each clock.

16.12.3 BAUD RATE GENERATOR

In $I^{2} C$ Master mode, the reload value for the BRG is located in the I2CBRG register. When the BRG is loaded with this value, the BRG counts down to ' 0 ' and stops until another reload has taken place. If clock arbitration is taking place, for instance, the BRG is reloaded when the SCL pin is sampled high.
As per the $I^{2} \mathrm{C}$ standard, FSCK may be 100 kHz or 400 kHz . However, the user can specify any baud rate up to 1 MHz . I2CBRG values of ' 0 ' or ' 1 ' are illegal.

EQUATION 16-1: I2CBRG VALUE

$$
I 2 C B R G=\left(\frac{F c y}{F s c l}-\frac{F c y}{1,111,111}\right)-1
$$

16.12.4 CLOCK ARBITRATION

Clock arbitration occurs when the master de-asserts the SCL pin (SCL allowed to float high) during any receive, transmit or Restart/Stop condition. When the SCL pin is allowed to float high, the Baud Rate Generator is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of I2CBRG and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device.

16.12.5 MULTI-MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master operation support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a ' 1 ' on SDA, by letting SDA float high while another master asserts a ' 0 '. When the SCL pin floats high, data should be stable. If the expected data on SDA is a ' 1 ' and the data sampled on the SDA pin $=0$, then a bus collision has taken place. The master will set the MI2CIF pulse and reset the master portion of the $I^{2} C$ port to its Idle state.
If a transmit was in progress when the bus collision occurred, the transmission is halted, the TBF flag is cleared, the SDA and SCL lines are de-asserted, and a value can now be written to I2CTRN. When the user services the $I^{2} \mathrm{C}$ master event Interrupt Service Routine, if the $\mathrm{I}^{2} \mathrm{C}$ bus is free (i.e., the P bit is set) the user can resume communication by asserting a Start condition.
If a Start, Restart, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are de-asserted, and the respective control bits in the I2CCON register are cleared to ' 0 '. When the user services the bus collision Interrupt Service Routine, and if the $I^{2} \mathrm{C}$ bus is free, the user can resume communication by asserting a Start condition.
The Master will continue to monitor the SDA and SCL pins, and if a Stop condition occurs, the MI2CIF bit will be set.
A write to the I2CTRN will start the transmission of data at the first data bit, regardless of where the transmitter left off when bus collision occurred.

In a Multi-Master environment, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the $I^{2} \mathrm{C}$ bus can be taken when the P bit is set in the I2CSTAT register, or the bus is Idle and the S and P bits are cleared.

16.13 $I^{2} \mathrm{C}$ Module Operation During CPU Sleep and Idle Modes

16.13.1 $\quad I^{2} \mathrm{C}$ OPERATION DURING CPU SLEEP MODE

When the device enters Sleep mode, all clock sources to the module are shutdown and stay at logic ' 0 '. If Sleep occurs in the middle of a transmission, and the state machine is partially into a transmission as the clocks stop, then the transmission is aborted. Similarly, if Sleep occurs in the middle of a reception, then the reception is aborted.

16.13.2 $I^{2} \mathrm{C}$ OPERATION DURING CPU IDLE MODE

For the $\mathrm{I}^{2} \mathrm{C}$, the I2CSIDL bit selects if the module will stop on Idle or continue on Idle. If I2CSIDL $=0$, the module will continue operation on assertion of the Idle mode. If I2CSIDL $=1$, the module will stop on Idle.

dsPIC30F2010

TABLE 16-2: $\quad \mathbf{I}^{2} \mathbf{C}^{\text {TM }}$ REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Rese	State	
I2CRCV	0200	-	-	-	-	-	-	-	-	Receive Register								0000	0000	0000	0000
I2CTRN	0202	-	-	-	-	-	-	-	-	Transmit Register								0000	0000	1111	1111
I2CBRG	0204	-	-	-	-	-	-	-	Baud Rate Generator									0000	0000	0000	0000
I2CCON	0206	I2CEN	-	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0001	0000	0000	0000
I2CSTAT	0208	ACKSTAT	TRSTAT	-	-	-	BCL	GCSTAT	ADD10	IWCOL	12 COV	D_A	P	S	R_W	RBF	TBF	0000	0000	0000	0000
I2CADD	020A	-	-	-	-	-	-	Address Register										0000	0000	0000	0000

Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

dsPIC30F2010

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART) MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046).

This section describes the Universal Asynchronous Receiver/Transmitter Communications module.

Note: Since dsPIC30F2010 devices have only one UART, all references to Ux... imply that $x=1$ only.

17.1 UART Module Overview

The key features of the UART module are:

- Full-duplex, 8 or 9-bit data communication
- Even, Odd or No Parity options (for 8-bit data)
- One or two Stop bits
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates range from 38 bps to 1.875 Mbps at a 30 MHz instruction rate
- 4-word deep transmit data buffer
- 4-word deep receive data buffer
- Parity, Framing and Buffer Overrun error detection
- Support for Interrupt only on Address Detect (9th bit = 1)
- Separate Transmit and Receive Interrupts
- Loopback mode for diagnostic support

FIGURE 17-1: UART TRANSMITTER BLOCK DIAGRAM

dsPIC30F2010

FIGURE 17-2: UART RECEIVER BLOCK DIAGRAM

Note: $x=1$ only.

dsPIC30F2010

17.2 Enabling and Setting Up UART

17.2.1 ENABLING THE UART

The UART module is enabled by setting the UARTEN bit in the UxMODE register (where $x=1$ only). Once enabled, the UxTX and UxRX pins are configured as an output and an input respectively, overriding the TRIS and LATCH register bit settings for the corresponding I/O port pins. The UxTX pin is at logic ' 1 ' when no transmission is taking place.

17.2.2 DISABLING THE UART

The UART module is disabled by clearing the UARTEN bit in the UxMODE register. This is the default state after any Reset. If the UART is disabled, all I/O pins operate as port pins under the control of the latch and TRIS bits of the corresponding port pins.
Disabling the UART module resets the buffers to empty states. Any data characters in the buffers are lost, and the baud rate counter is reset.
All error and status flags associated with the UART module are reset when the module is disabled. The URXDA, OERR, FERR, PERR, UTXEN, UTXBRK and UTXBF bits are cleared, whereas RIDLE and TRMT are set. Other control bits, including ADDEN, URXISEL<1:0>, UTXISEL, as well as the UxMODE and UxBRG registers, are not affected.
Clearing the UARTEN bit while the UART is active will abort all pending transmissions and receptions and reset the module as defined above. Re-enabling the UART will restart the UART in the same configuration.

17.2.3 ALTERNATE I/O

The alternate I / O function is enabled by setting the ALTIO bit (UxMODE<10>). If ALTIO = 1 , the UxATX and UxARX pins (alternate transmit and alternate receive pins, respectively) are used by the UART module instead of the UxTX and UxRX pins. If ALTIO $=0$, the UxTX and UxRX pins are used by the UART module.

17.2.4 SETTING UP DATA, PARITY AND STOP BIT SELECTIONS

Control bits PDSEL<1:0> in the UxMODE register are used to select the data length and parity used in the transmission. The data length may either be 8 bits with even, odd or no parity, or 9 bits with no parity.
The STSEL bit determines whether one or two Stop bits will be used during data transmission.
The default (Power-on) setting of the UART is 8 bits, no parity, 1 Stop bit (typically represented as $8, \mathrm{~N}, 1$).

17.3 Transmitting Data

17.3.1 TRANSMITTING IN 8-BIT DATA MODE

The following steps must be performed in order to transmit 8-bit data:

1. Set up the UART:

First, the data length, parity and number of Stop bits must be selected. Then, the Transmit and Receive Interrupt enable and priority bits are setup in the UxMODE and UxSTA registers. Also, the appropriate baud rate value must be written to the UxBRG register.
2. Enable the UART by setting the UARTEN bit (UxMODE<15>).
3. Set the UTXEN bit (UxSTA<10>), thereby enabling a transmission.

Note: The UTXEN bit must be set after the UARTEN bit is set to enable UART transmissions.
4. Write the byte to be transmitted to the lower byte of UxTXREG. The value will be transferred to the Transmit Shift register (UxTSR) immediately and the serial bit stream will start shifting out during the next rising edge of the baud clock. Alternatively, the data byte may be written while UTXEN $=0$, following which the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
5. A Transmit interrupt will be generated depending on the value of the interrupt control bit UTXISEL (UxSTA<15>).

17.3.2 TRANSMITTING IN 9-BIT DATA MODE

The sequence of steps involved in the transmission of 9 -bit data is similar to 8 -bit transmission, except that a 16-bit data word (of which the upper 7 bits are always clear) must be written to the UxTXREG register.

17.3.3 TRANSMIT BUFFER (UxTXB)

The transmit buffer is 9 bits wide and 4 characters deep. Including the Transmit Shift Register (UxTSR), the user effectively has a 5-deep FIFO (First In First Out) buffer. The UTXBF status bit (UxSTA<9>) indicates whether the transmit buffer is full.
If a user attempts to write to a full buffer, the new data will not be accepted into the FIFO, and no data shift will occur within the buffer. This enables recovery from a buffer overrun condition.

The FIFO is reset during any device Reset, but is not affected when the device enters or wakes up from a Power-Saving mode.

dsPIC30F2010

17.3.4 TRANSMIT INTERRUPT

The transmit interrupt flag (U1TXIF or U2TXIF) is located in the corresponding interrupt flag register.

The transmitter generates an edge to set the UxTXIF bit. The condition for generating the interrupt depends on UTXISEL control bit:
a) If UTXISEL $=0$, an interrupt is generated when a word is transferred from the Transmit buffer to the Transmit Shift register (UxTSR). This means that the transmit buffer has at least one empty word.
b) If UTXISEL = 1 , an interrupt is generated when a word is transferred from the Transmit buffer to the Transmit Shift register (UxTSR) and the Transmit buffer is empty.
Switching between the two interrupt modes during operation is possible and sometimes offers more flexibility.

17.3.5 TRANSMIT BREAK

Setting the UTXBRK bit (UxSTA<11>) will cause the UxTX line to be driven to logic ' 0 '. The UTXBRK bit overrides all transmission activity. Therefore, the user should generally wait for the transmitter to be Idle before setting UTXBRK.
To send a break character, the UTXBRK bit must be set by software and must remain set for a minimum of 13 baud clock cycles. The UTXBRK bit is then cleared by software to generate Stop bits. The user must wait for a duration of at least one or two baud clock cycles in order to ensure a valid Stop bit(s) before reloading the UxTXB or starting other transmitter activity. Transmission of a break character does not generate a transmit interrupt.

17.4 Receiving Data

17.4.1 RECEIVING IN 8-BIT OR 9-BIT DATA MODE

The following steps must be performed while receiving 8-bit or 9-bit data:

1. Set up the UART (see Section 17.3.1 "Transmitting in 8-bit data mode").
2. Enable the UART (see Section 17.3.1 "Transmitting in 8-bit data mode").
3. A receive interrupt will be generated when one or more data words have been received, depending on the receive interrupt settings specified by the URXISEL bits (UxSTA<7:6>).
4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
5. Read the received data from UxRXREG. The act of reading UxRXREG will move the next word to the top of the receive FIFO, and the PERR and FERR values will be updated.

17.4.2 RECEIVE BUFFER (UxRXB)

The receive buffer is 4 words deep. Including the Receive Shift register (UxRSR), the user effectively has a 5 -word deep FIFO buffer.
URXDA (UxSTA<0>) = 1 indicates that the receive buffer has data available. URXDA $=0$ implies that the buffer is empty. If a user attempts to read an empty buffer, the old values in the buffer will be read and no data shift will occur within the FIFO.
The FIFO is reset during any device Reset. It is not affected when the device enters or wakes up from a Power-Saving mode.

17.4.3 RECEIVE INTERRUPT

The receive interrupt flag (U1RXIF) can be read from the corresponding interrupt flag register. The interrupt flag is set by an edge generated by the receiver. The condition for setting the receive interrupt flag depends on the settings specified by the URXISEL<1:0> (UxSTA<7:6>) control bits.
a) If URXISEL<1:0> = 00 or 01 , an interrupt is generated every time a data word is transferred from the Receive Shift Register (UxRSR) to the Receive Buffer. There may be one or more characters in the receive buffer.
b) If $U R X I S E L<1: 0>=10$, an interrupt is generated when a word is transferred from the Receive Shift Register (UxRSR) to the Receive Buffer, which, as a result of the transfer, contains 3 characters.
c) If URXISEL $<1: 0\rangle=11$, an interrupt is set when a word is transferred from the Receive Shift Register (UxRSR) to the Receive Buffer, which, as a result of the transfer, contains 4 characters (i.e., becomes full).

Switching between the Interrupt modes during operation is possible, though generally not advisable during normal operation.

17.5 Reception Error Handling

17.5.1 RECEIVE BUFFER OVERRUN ERROR (OERR BIT)

The OERR bit (UxSTA<1>) is set if all of the following conditions occur:
a) The receive buffer is full.
b) The receive shift register is full, but unable to transfer the character to the receive buffer.
c) The Stop bit of the character in the UxRSR is detected, indicating that the UxRSR needs to transfer the character to the buffer.

Once OERR is set, no further data is shifted in UxRSR (until the OERR bit is cleared in software or a Reset occurs). The data held in UxRSR and UxRXREG remains valid.

dsPIC30F2010

17.5.2 FRAMING ERROR (FERR)

The FERR bit (UxSTA<2>) is set if a ' 0 ' is detected instead of a Stop bit. If two Stop bits are selected, both Stop bits must be ' 1 ', otherwise FERR will be set. The read-only FERR bit is buffered along with the received data. It is cleared on any Reset.

17.5.3 PARITY ERROR (PERR)

The PERR bit (UxSTA<3>) is set if the parity of the received word is incorrect. This error bit is applicable only if a Parity mode (odd or even) is selected. The read-only PERR bit is buffered along with the received data bytes. It is cleared on any Reset.

17.5.4 IDLE STATUS

When the receiver is active (i.e., between the initial detection of the Start bit and the completion of the Stop bit), the RIDLE bit ($U x S T A<4>$) is ' 0 '. Between the completion of the Stop bit and detection of the next Start bit, the RIDLE bit is ' 1 ', indicating that the UART is Idle.

17.5.5 RECEIVE BREAK

The receiver will count and expect a certain number of bit times based on the values programmed in the PDSEL (UxMODE<2:1>) and STSEL (UxMODE<0>) bits.
If the break is longer than 13 bit times, the reception is considered complete after the number of bit times specified by PDSEL and STSEL. The URXDA bit is set, FERR is set, zeros are loaded into the receive FIFO, interrupts are generated, if appropriate, and the RIDLE bit is set.

When the module receives a long break signal and the receiver has detected the Start bit, the data bits and the invalid Stop bit (which sets the FERR), the receiver must wait for a valid Stop bit before looking for the next Start bit. It cannot assume that the break condition on the line is the next Start bit.
Break is regarded as a character containing all ' 0 's, with the FERR bit set. The break character is loaded into the buffer. No further reception can occur until a Stop bit is received. Note that RIDLE goes high when the Stop bit has not been received yet.

17.6 Address Detect Mode

Setting the ADDEN bit (UxSTA<5>) enables this special mode, in which a 9th bit (URX8) value of ' 1 ' identifies the received word as an address rather than data. This mode is only applicable for 9-bit data communication. The URXISEL control bit does not have any impact on interrupt generation in this mode, since an interrupt (if enabled) will be generated every time the received word has the 9th bit set.

17.7 Loopback Mode

Setting the LPBACK bit enables this special mode in which the UxTX pin is internally connected to the UxRX pin. When configured for the Loopback mode, the UxRX pin is disconnected from the internal UART receive logic. However, the UxTX pin still functions as in a normal operation.

To select this mode:
a) Configure UART for desired mode of operation.
b) Set LPBACK = 1 to enable Loopback mode.
c) Enable transmission as defined in Section 17.3
"Transmitting Data".

17.8 Baud Rate Generator

The UART has a 16-bit Baud Rate Generator to allow maximum flexibility in baud rate generation. The Baud Rate Generator register (UxBRG) is readable and writable. The baud rate is computed as follows:
$B R G=16$-bit value held in UxBRG register (0 through 65535)
FCY = Instruction Clock Rate (1/TCY)
The Baud Rate is given by Equation 17-1.

EQUATION 17-1: BAUD RATE

$$
\text { Baud Rate }=\mathrm{FCY} /(16 *(\mathrm{BRG}+1))
$$

Therefore, maximum baud rate possible is
$\mathrm{FCY} / 16$ (if $\mathrm{BRG}=0$),
and the minimum baud rate possible is
FCY / (16 * 65536).
With a full 16-bit Baud Rate Generator, at 30 MIPs operation, the minimum baud rate achievable is 28.5 bps.

17.9 Auto Baud Support

To allow the system to determine baud rates of received characters, the input can be optionally linked to a selected capture input. To enable this mode, the user must program the input capture module to detect the falling and rising edges of the Start bit.

dsPIC30F2010

17.10 UART Operation During CPU Sleep and Idle Modes

17.10.1 UART OPERATION DURING CPU SLEEP MODE

When the device enters Sleep mode, all clock sources to the module are shutdown and stay at logic ' 0 '. If entry into Sleep mode occurs while a transmission is in progress, then the transmission is aborted. The UxTX pin is driven to logic ' 1 '. Similarly, if entry into Sleep mode occurs while a reception is in progress, then the reception is aborted. The UxSTA, UxMODE, transmit and receive registers and buffers, and the UxBRG register are not affected by Sleep mode.
If the WAKE bit (UxMODE<7>) is set before the device enters Sleep mode, then a falling edge on the UxRX pin will generate a receive interrupt. The Receive Interrupt Select mode bit (URXISEL) has no effect for this function. If the receive interrupt is enabled, then this will wake-up the device from Sleep. The UARTEN bit must be set in order to generate a wake-up interrupt.

17.10.2 UART OPERATION DURING CPU IDLE MODE

For the UART, the USIDL bit selects if the module will stop operation when the device enters Idle mode, or whether the module will continue on Idle. If USIDL $=0$, the module will continue operation during Idle mode. If USIDL = 1, the module will stop on Idle.
TABLE 17-1: UART1 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State			
U1MODE	020C	UARTEN	-	USIDL	-	-	ALTIO	-	-	WAKE	LPBACK	ABAUD	-	-	PDSEL1	PDSELO	STSEL	0000	0000	0000	0000
U1STA	020E	UTXISEL	-	-	-	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISELO	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0000	0001	0001	0000
U1TXREG	0210	-	-	-	-	-	-	-	UTX8	Transmit Register								0000	000u	uuu	uuu
U1RXREG	0212	-	-	-	-	-	-	-	URX8				eceive R	gister				0000	0000	0000	0000
U1BRG	0214	Baud Rate Generator Prescaler																0000	0000	0000	0000

Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

dsPIC30F2010

NOTES:

dsPIC30F2010

18.0 10-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046)

The10-bit high-speed Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit digital number. This module is based on a Successive Approximation Register (SAR) architecture, and provides a maximum sampling rate of 500 ksps . The ADC module has up to 16 analog inputs which are multiplexed into four sample and hold amplifiers. The output of the sample and hold is the input into the converter, which generates the result. The analog reference voltages are software selectable to either the device supply voltage (AVDD/AVSS) or the voltage level on the (VREF+/Vref-) pin. The ADC has a unique feature of being able to operate while the device is in Sleep mode.

The ADC module has six 16-bit registers:

- A/D Control Register1 (ADCON1)
- A/D Control Register2 (ADCON2)
- A/D Control Register3 (ADCON3)
- A/D Input Select Register (ADCHS)
- A/D Port Configuration Register (ADPCFG)
- A/D Input Scan Selection Register (ADCSSL)

The ADCON1, ADCON2 and ADCON3 registers control the operation of the ADC module. The ADCHS register selects the input channels to be converted. The ADPCFG register configures the port pins as analog inputs or as digital I/O. The ADCSSL register selects inputs for scanning.

Note: The SSRC<2:0>, ASAM, SIMSAM,

 SMPI<3:0>, BUFM and ALTS bits, as well as the ADCON3 and ADCSSL registers, must not be written to while ADON = 1 . This would lead to indeterminate results.The block diagram of the ADC module is shown in Figure 18-1.

FIGURE 18-1: 10-BIT HIGH-SPEED ADC FUNCTIONAL BLOCK DIAGRAM

dsPIC30F2010

18.1 A/D Result Buffer

The module contains a 16 -word dual port read-only buffer, called ADCBUFO...ADCBUFF, to buffer the ADC results. The RAM is 10 bits wide, but is read into different format 16-bit words. The contents of the sixteen ADC conversion result buffer registers, ADCBUFO through ADCBUFF, cannot be written by user software.

18.2 Conversion Operation

After the ADC module has been configured, the sample acquisition is started by setting the SAMP bit. Various sources, such as a programmable bit, timer time-outs and external events, will terminate acquisition and start a conversion. When the A/D conversion is complete, the result is loaded into ADCBUFO...ADCBUFF, and the A/D interrupt flag ADIF and the DONE bit are set after the number of samples specified by the SMPI bit.

The following steps should be followed for doing an A/D conversion:

1. Configure the ADC module:

- Configure analog pins, voltage reference and digital I/O
- Select A/D input channels
- Select A/D conversion clock
- Select A/D conversion trigger
- Turn on A/D module

2. Configure A / D interrupt (if required):

- Clear ADIF bit
- Select A/D interrupt priority

3. Start sampling.
4. Wait the required acquisition time.
5. Trigger acquisition end, start conversion
6. Wait for A/D conversion to complete, by either:

- Waiting for the A/D interrupt
- Waiting for the DONE bit to get set

7. Read A/D result buffer, clear ADIF if required.

18.3 Selecting the Conversion Sequence

Several groups of control bits select the sequence in which the A/D connects inputs to the sample/hold channels, converts channels, writes the buffer memory, and generates interrupts. The sequence is controlled by the sampling clocks.
The SIMSAM bit controls the acquire/convert sequence for multiple channels. If the SIMSAM bit is ' 0 ', the two or four selected channels are acquired and converted sequentially, with two or four sample clocks. If the SIMSAM bit is ' 1 ', two or four selected channels are acquired simultaneously, with one sample clock. The channels are then converted sequentially. Obviously, if there is only 1 channel selected, the SIMSAM bit is not applicable.

The CHPS bits selects how many channels are sampled. This can vary from 1, 2 or 4 channels. If CHPS selects 1 channel, the CH 0 channel will be sampled at the sample clock and converted. The result is stored in the buffer. If CHPS selects 2 channels, the CHO and CH 1 channels will be sampled and converted. If CHPS selects 4 channels, the $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 channels will be sampled and converted.
The SMPI bits select the number of acquisition/conversion sequences that would be performed before an interrupt occurs. This can vary from 1 sample per interrupt to 16 samples per interrupt.
The user cannot program a combination of CHPS and SMPI bits that specifies more than 16 conversions per interrupt, or 8 conversions per interrupt, depending on the BUFM bit. The BUFM bit, when set, will split the 16 -word results buffer (ADCBUFO...ADCBUFF) into two 8 -word groups. Writing to the 8 -word buffers will be alternated on each interrupt event. Use of the BUFM bit will depend on how much time is available for moving data out of the buffers after the interrupt, as determined by the application.

If the processor can quickly unload a full buffer within the time it takes to acquire and convert one channel, the BUFM bit can be ' 0 ' and up to 16 conversions may be done per interrupt. The processor will have one sample and conversion time to move the sixteen conversions.
If the processor cannot unload the buffer within the acquisition and conversion time, the BUFM bit should be ' 1 '. For example, if SMPI<3:0> (ADCON2<5:2>) $=$ 0111, then eight conversions will be loaded into $1 / 2$ of the buffer, following which an interrupt occurs. The next eight conversions will be loaded into the other $1 / 2$ of the buffer. The processor will have the entire time between interrupts to move the eight conversions.
The ALTS bit can be used to alternate the inputs selected during the sampling sequence. The input multiplexer has two sets of sample inputs: MUX A and MUX B. If the ALTS bit is ' 0 ', only the MUX A inputs are selected for sampling. If the ALTS bit is ' 1 ' and SMPI<3:0> = 0000, on the first sample/convert sequence, the MUX A inputs are selected, and on the next acquire/convert sequence, the MUX B inputs are selected.
The CSCNA bit (ADCON2<10>) will allow the CH 0 channel inputs to be alternately scanned across a selected number of analog inputs for the MUX A group. The inputs are selected by the ADCSSL register. If a particular bit in the ADCSSL register is ' 1 ', the corresponding input is selected. The inputs are always scanned from lower to higher numbered inputs, starting after each interrupt. If the number of inputs selected is greater than the number of samples taken per interrupt, the higher numbered inputs are unused.

dsPIC30F2010

18.4 Programming the Start of Conversion Trigger

The conversion trigger will terminate acquisition and start the requested conversions.
The SSRC<2:0> bits select the source of the conversion trigger.
The SSRC bits provide for up to 5 alternate sources of conversion trigger.
When SSRC<2:0> = 000, the conversion trigger is under software control. Clearing the SAMP bit will cause the conversion trigger.

When SSRC<2:0> = 111 (Auto-Start mode), the conversion trigger is under A/D clock control. The SAMC bits select the number of A / D clocks between the start of acquisition and the start of conversion. This provides the fastest conversion rates on multiple channels. SAMC must always be at least 1 clock cycle.
Other trigger sources can come from timer modules, Motor Control PWM module or external interrupts.
Note: To operate the A / D at the maximum specified conversion speed, the Auto Convert Trigger option should be selected (SSRC $=111$) and the Auto Sample Time bits should be set to 1 TAD (SAMC = 00001). This configuration will give a total conversion period (sample + convert) of 13 TAD.
The use of any other conversion trigger will result in additional TAD cycles to synchronize the external event to the A/D.

18.5 Aborting a Conversion

Clearing the ADON bit during a conversion will abort the current conversion and stop the sampling sequencing. The ADCBUF will not be updated with the partially completed A/D conversion sample. That is, the ADCBUF will continue to contain the value of the last completed conversion (or the last value written to the ADCBUF register).

If the clearing of the ADON bit coincides with an auto start, the clearing has a higher priority.

After the A/D conversion is aborted, a 2 TAD wait is required before the next sampling may be started by setting the SAMP bit.
If sequential sampling is specified, the A / D will continue at the next sample pulse which corresponds with the next channel converted. If simultaneous sampling is specified, the A / D will continue with the next multichannel group conversion sequence.

18.6 Selecting the A/D Conversion Clock

The A/D conversion requires 12 TAD. The source of the A/D conversion clock is software selected using a six bit counter. There are 64 possible options for TAD.

EQUATION 18-1: A/D CONVERSION CLOCK

$$
\begin{gathered}
\mathrm{TAD}=\mathrm{TCY} *(0.5 *(\mathrm{ADCS}<5: 0>+1)) \\
\mathrm{ADCS}<5: 0>=2 \frac{\mathrm{TAD}}{\mathrm{TCY}}-1
\end{gathered}
$$

The internal RC oscillator is selected by setting the ADRC bit.

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 83.33 nsec (for VdD $=5 \mathrm{~V}$). Refer to the Section 22.0 "Electrical Characteristics" for minimum TAD under other operating conditions.

Example 18-1 shows a sample calculation for the ADCS $<5: 0>$ bits, assuming a device operating speed of 30 MIPS.

EXAMPLE 18-1: A/D CONVERSION CLOCK CALCULATION

TAD $=84 \mathrm{nsec}$ TCY $=33 \mathrm{nsec}(30 \mathrm{MIPS})$	
$\mathrm{ADCS}<5: 0>$	$=2 \frac{\mathrm{TAD}}{\mathrm{TCY}}-1$
	$=2 \cdot \frac{84 \mathrm{nsec}}{33 \mathrm{nsec}}-1$
	$=4.09$
Therefore,	
Set ADCS $<5: 0>$	$=5$
Actual TAD	$=\frac{\mathrm{TCY}}{2}(\mathrm{ADCS}<5: 0>+1)$
	$=\frac{33 \mathrm{nsec}}{2}(5+1)$
	$=99 \mathrm{nsec}$

dsPIC30F2010

18.7 A/D Conversion Speeds

The dsPIC30F 10-bit ADC specifications permit a maximum 1 Msps sampling rate. Table 18-1 summarizes the conversion speeds for the dsPIC30F 10-bit ADC and the required operating conditions.
TABLE 18-1: 10-BIT A/D CONVERSION RATE PARAMETERS

dsPIC30F 10-bit A/D Converter Conversion Rates						
A/D Speed	TAD Minimum	Sampling Time Min	Rs Max	VdD	Temperature	A/D Channels Configuration
$\begin{array}{\|l} \hline \text { Up to } \\ 1 \text { Msps }{ }^{(1)} \end{array}$	83.33 ns	12 TAD	500Ω	4.5 V to 5.5 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
$\begin{aligned} & \text { Up to } \\ & 750 \text { ksps }^{(1)} \end{aligned}$	95.24 ns	2 TAD	500Ω	4.5 V to 5.5 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Up to 600 ksps ${ }^{(1)}$	138.89 ns	12 TAD	500Ω	3.0 V to 5.5 V	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Up to 500 ksps	153.85 ns	1 TAD	$5.0 \mathrm{k} \Omega$	4.5 V to 5.5 V	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Up to 300 ksps	256.41 ns	1 TAD	$5.0 \mathrm{k} \Omega$	3.0 V to 5.5 V	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

Note 1: External Vref- and Vref+ pins must be used for correct operation. See Figure 18-2 for recommended circuit.

The configuration guidelines give the required setup values for the conversion speeds above 500 ksps , since they require external Vref pins usage and there are some differences in the configuration procedure. Configuration details that are not critical to the conversion speed have been omitted.

Figure 18-2 depicts the recommended circuit for the conversion rates above 500 ksps .

FIGURE 18-2: ADC VOLTAGE REFERENCE SCHEMATIC

18.7.1 1 Msps CONFIGURATION GUIDELINE

The configuration for 1 Msps operation is dependent on whether a single input pin is to be sampled or whether multiple pins will be sampled.

18.7.1.1 Single Analog Input

For conversions at 1 Msps for a single analog input, at least two sample and hold channels must be enabled. The analog input multiplexer must be configured so that the same input pin is connected to both sample and hold channels. The A/D converts the value held on one S / H channel, while the second S / H channel acquires a new input sample.

18.7.1.2 Multiple Analog Inputs

The A/D converter can also be used to sample multiple analog inputs using multiple sample and hold channels. In this case, the total 1 Msps conversion rate is divided among the different input signals. For example, four inputs can be sampled at a rate of 250 ksps for each signal or two inputs could be sampled at a rate of 500 ksps for each signal. Sequential sampling must be used in this configuration to allow adequate sampling time on each input.

18.7.1.3 1 Msps Configuration Items

The following configuration items are required to achieve a 1 Msps conversion rate.

- Comply with conditions provided in Table 19-2
- Connect external Vref+ and Vref- pins following the recommended circuit shown in Figure 18-2
- Set SSRC<2:0> = 111 in the ADCON1 register to enable the auto-convert option
- Enable automatic sampling by setting the ASAM control bit in the ADCON1 register
- Enable sequential sampling by clearing the SIMSAM bit in the ADCON1 register
- Enable at least two sample and hold channels by writing the CHPS $<1: 0>$ control bits in the ADCON2 register
- Write the $\mathrm{SMPI}<3: 0>$ control bits in the ADCON2 register for the desired number of conversions between interrupts. At a minimum, set SMPI<3:0> = 0001 since at least two sample and hold channels should be enabled
- Configure the A/D clock period to be:

$$
\frac{1}{12 \times 1,000,000}
$$

by writing to the ADCS $<5: 0>$ control bits in the ADCON3 register

- Configure the sampling time to be 2 TAD by writing: $\mathrm{SAMC}<4: 0>=00010$
- Select at least two channels per analog input pin by writing to the ADCHS register

dsPIC30F2010

18.7.2 750 ksps CONFIGURATION GUIDELINE

The following configuration items are required to achieve a 750 ksps conversion rate. This configuration assumes that a single analog input is to be sampled.

- Comply with conditions provided in Table 18-2
- Connect external Vref+ and Vref- pins following the recommended circuit shown in Figure 18-2
- Set SSRC<2:0> = 111 in the ADCON1 register to enable the auto-convert option
- Enable automatic sampling by setting the ASAM control bit in the ADCON1 register
- Enable one sample and hold channel by setting CHPS $<1: 0>=00$ in the ADCON2 register
- Write the SMPI<3:0> control bits in the ADCON2 register for the desired number of conversions between interrupts
- Configure the A / D clock period to be:

$$
\frac{1}{(12+2) \times 750,000}=95.24 \mathrm{~ns}
$$

by writing to the ADCS<5:0> control bits in the ADCON3 register

- Configure the sampling time to be 2 TAD by writing: $\mathrm{SAMC}<4: 0>=00010$

18.7.3 600 ksps CONFIGURATION GUIDELINE

The configuration for 600 ksps operation is dependent on whether a single input pin is to be sampled or whether multiple pins will be sampled.

18.7.3.1 Single Analog Input

When performing conversions at 600 ksps for a single analog input, at least two sample and hold channels must be enabled. The analog input multiplexer must be configured so that the same input pin is connected to both sample and hold channels. The A/D converts the value held on one S / H channel, while the second S / H channel acquires a new input sample.

18.7.3.2 Multiple Analog Input

The ADC can also be used to sample multiple analog inputs using multiple sample and hold channels. In this case, the total 600 ksps conversion rate is divided among the different input signals. For example, four inputs can be sampled at a rate of 150 ksps for each signal or two inputs can be sampled at a rate of 300 ksps for each signal. Sequential sampling must be used in this configuration to allow adequate sampling time on each input.

18.7.3.3 600 ksps Configuration Items

The following configuration items are required to achieve a 600 ksps conversion rate.

- Comply with conditions provided in Table 18-2
- Connect external Vref+ and Vref- pins following the recommended circuit shown in Figure 18-2
- Set SSRC<2:0> = 111 in the ADCON1 register to enable the auto-convert option
- Enable automatic sampling by setting the ASAM control bit in the ADCON1 register
- Enable sequential sampling by clearing the SIMSAM bit in the ADCON1 register
- Enable at least two sample and hold channels by writing the CHPS $<1: 0>$ control bits in the ADCON2 register
- Write the $\mathrm{SMPI}<3: 0>$ control bits in the ADCON2 register for the desired number of conversions between interrupts. At a minimum, set SMPI<3:0> = 0001 since at least two sample and hold channels should be enabled
- Configure the A/D clock period to be:

$$
\frac{1}{12 \times 600,000}=138.89 \mathrm{~ns}
$$

by writing to the ADCS $<5: 0>$ control bits in the ADCON3 register

- Configure the sampling time to be 2 TAD by writing: SAMC<4:0> $=00010$

Select at least two channels per analog input pin by writing to the ADCHS register.

dsPIC30F2010

18.8 A/D Acquisition Requirements

The analog input model of the 10 -bit ADC is shown in Figure 18-3. The total sampling time for the A / D is a function of the internal amplifier settling time, device VDD and the holding capacitor charge time.
For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The source impedance (Rs), the interconnect impedance (RIC), and the internal sampling switch (Rss) impedance combine to directly affect the time required to charge the capacitor CHOLD. The combined impedance of the analog sources must therefore be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the A/D converter, the maximum recommended source impedance, Rs, is $5 \mathrm{k} \Omega$. After the analog input channel is selected (changed), this sampling function must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.

The user must allow at least 1 TAD period of sampling time, TSAMP, between conversions to allow each sample to be acquired. This sample time may be controlled manually in software by setting/clearing the SAMP bit, or it may be automatically controlled by the A/D converter. In an automatic configuration, the user must allow enough time between conversion triggers so that the minimum sample time can be satisfied. Refer to the Electrical Specifications for TAD and sample time requirements.

FIGURE 18-3: ADC ANALOG INPUT MODEL

Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if $\mathrm{Rs} \leq 5 \mathrm{k} \Omega$.

dsPIC30F2010

18.9 Module Power-Down Modes

The module has 3 internal power modes. When the ADON bit is ' 1 ', the module is in Active mode; it is fully powered and functional. When ADON is ' 0 ', the module is in Off mode. The digital and analog portions of the circuit are disabled for maximum current savings. In order to return to the Active mode from Off mode, the user must wait for the ADC circuitry to stabilize.

18.10 A/D Operation During CPU Sleep and Idle Modes

18.10.1 A/D OPERATION DURING CPU SLEEP MODE

When the device enters Sleep mode, all clock sources to the module are shutdown and stay at logic ' 0 '.
If Sleep occurs in the middle of a conversion, the conversion is aborted. The converter will not continue with a partially completed conversion on exit from Sleep mode.
Register contents are not affected by the device entering or leaving Sleep mode.
The A / D module can operate during Sleep mode if the A / D clock source is set to RC (ADRC = 1). When the $R C$ clock source is selected, the A / D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is complete, the DONE bit will be set and the result loaded into the ADCBUF register.

If the A / D interrupt is enabled, the device will wake-up from Sleep. If the A/D interrupt is not enabled, the A/D module will then be turned off, although the ADON bit will remain set.

18.10.2 A/D OPERATION DURING CPU IDLE MODE

The ADSIDL bit selects if the module will stop on Idle or continue on Idle. If ADSIDL $=0$, the module will continue operation on assertion of Idle mode. If ADSIDL = 1 , the module will stop on Idle.

18.11 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off, and any conversion and acquisition sequence is aborted. The values that are in the ADCBUF registers are not modified. The A/D result register will contain unknown data after a Power-on Reset.

18.12 Output Formats

The A/D result is 10 bits wide. The data buffer RAM is also 10 bits wide. The 10 -bit data can be read in one of four different formats. The FORM<1:0> bits select the format. Each of the output formats translates to a 16-bit result on the data bus.

Write data will always be in right justified (integer) format.

FIGURE 18-4: A/D OUTPUT DATA FORMATS

RAM Contents:

Read to Bus:
Signed Fractional (1.15)

Fractional (1.15)

dsPIC30F2010

18.13 Configuring Analog Port Pins

The use of the ADPCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the $\mathrm{CH} O S \mathrm{~A}<3: 0>/ \mathrm{CH} 0 \mathrm{SB}<3: 0>$ bits and the TRIS bits.

When reading the PORT register, all pins configured as analog input channels will read as cleared.

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins), may cause the input buffer to consume current that exceeds the device specifications.

18.14 Connection Considerations

The analog inputs have diodes to VdD and Vss as ESD protection. This requires that the analog input be between VDD and Vss. If the input voltage exceeds this range by greater than 0.3 V (either direction), one of the diodes becomes forward biased and it may damage the device if the input current specification is exceeded.

An external RC filter is sometimes added for antialiasing of the input signal. The R component should be selected to ensure that the sampling time requirements are satisfied. Any external components connected (via high-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

dsPIC30F2010

TABLE 18-2: ADC REGISTER MAP
0000 00uu uuuu uuuu 0000 00uu uuuu uuuu
0000 00uu uuuu uuuu 0000 00uu uuuu uuuu

3	3
3	3
3	3
3	3
3	3
3	3
3	3
0	0
0	0
0	0
0	0
0	0

0000000000000000 0000000000000000 | 0 | 0 |
| :--- | :--- |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 | 0000000000000000

 Legend: $u=$ uninitialized bit
Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

19.0 SYSTEM INTEGRATION

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F/ 33F Programmer's Reference Manual" (DS70157).

There are several features intended to maximize system reliability, minimize cost through elimination of external components, provide Power-Saving Operating modes and offer code protection:

- Oscillator Selection
- Reset
- Power-on Reset (POR)
- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- Programmable Brown-out Reset (BOR)
- Watchdog Timer (WDT)
- Power-Saving modes (Sleep and Idle)
- Code Protection
- Unit ID Locations
- In-Circuit Serial Programming (ICSP) programming capability
dsPIC30F devices have a Watchdog Timer, which is permanently enabled via the Configuration bits, or can be software controlled. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Startup Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Powerup Timer (PWRT), which provides a delay on power-up only, designed to keep the part in Reset while the power supply stabilizes. With these two timers on-chip, most applications need no external Reset circuitry.
Sleep mode is designed to offer a very low current Power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer Wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit a wide variety of applications. In the Idle mode, the clock sources are still active, but the CPU is shut off. The RC oscillator option saves system cost, while the LP crystal option saves power.

19.1 Oscillator System Overview

The dsPIC30F oscillator system has the following modules and features:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to boost internal operating frequency
- A clock switching mechanism between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- Clock Control Register OSCCON
- Configuration bits for main oscillator selection

Table 19-1 provides a summary of the dsPIC30F Oscillator Operating modes. A simplified diagram of the oscillator system is shown in Figure 19-1.
Configuration bits determine the clock source upon Power-on Reset (POR) and Brown-out Reset (BOR). Thereafter, the clock source can be changed between permissible clock sources. The OSCCON register controls the clock switching and reflects system clock related status bits.

dsPIC30F2010

TABLE 19-1: OSCILLATOR OPERATING MODES

Oscillator Mode	Description
XTL	$200 \mathrm{kHz-4} \mathrm{MHz} \mathrm{crystal} \mathrm{on} \mathrm{OSC1:OSC2}$.
XT	$4 \mathrm{MHz}-10 \mathrm{MHz}$ crystal on OSC1:OSC2.
XT w/ PLL 4x	$4 \mathrm{MHz-10} \mathrm{MHz}$ crystal on OSC1:OSC2. 4x PLL enabled.
XT w/ PLL 8 x	$4 \mathrm{MHz-10} \mathrm{MHz} \mathrm{crystal} \mathrm{on} \mathrm{OSC1:OSC2}. \mathrm{8x} \mathrm{PLL} \mathrm{enabled}$.
XT w/ PLL 16x	$4 \mathrm{MHz}-10 \mathrm{MHz}$ crystal on OSC1:OSC2. 16x PLL enabled ${ }^{(1)}$.
LP	32 kHz crystal on SOSCO:SOSCI ${ }^{(2)}$.
HS	$10 \mathrm{MHz}-25 \mathrm{MHz}$ crystal.
EC	External clock input ($0-40 \mathrm{MHz}$).
ECIO	External clock input ($0-40 \mathrm{MHz}$). OSC2 pin is I / O.
EC w/ PLL 4x	External clock input ($0-40 \mathrm{MHz}$). OSC2 pin is $\mathrm{I} / \mathrm{O} .4 \times \mathrm{PLL}$ enabled ${ }^{(1)}$.
EC $w /$ PLL $8 x$	External clock input ($0-40 \mathrm{MHz}$). OSC2 ${ }^{\text {pin }}$ is $\mathrm{I} / \mathrm{O} .8 \mathrm{x} \mathrm{PLL} \mathrm{enabled}{ }^{(1)}$.
EC w/ PLL 16x	External clock input ($0-40 \mathrm{MHz}$). OSC2 pin is I/O. 16x PLL enabled ${ }^{(1)}$.
ERC	External RC oscillator. OSC2 pin is Fosc/4 output ${ }^{(3)}$.
ERCIO	External RC oscillator. OSC2 pin is $\mathrm{I} / \mathrm{O}^{(3)}$.
FRC	7.37 MHz internal RC Oscillator.
LPRC	512 kHz internal RC Oscillator.

Note 1: dsPIC30F maximum operating frequency of 120 MHz must be met.
2: LP oscillator can be conveniently shared as system clock, as well as real-time clock for Timer1.
3: Requires external R and C. Frequency operation up to 4 MHz .

FIGURE 19-1: OSCILLATOR SYSTEM BLOCK DIAGRAM

dsPIC30F2010

19.2 Oscillator Configurations

19.2.1 INITIAL CLOCK SOURCE SELECTION

While coming out of Power-on Reset or Brown-out Reset, the device selects its clock source based on:
a) $\mathrm{FOS}<1: 0>$ Configuration bits that select one of four oscillator groups.
b) AND FPR<3:0> Configuration bits that select one of 13 oscillator choices within the primary group.
The selection is as shown in Table 19-2.

19.2.2 OSCILLATOR START-UP TIMER (OST)

In order to ensure that a crystal oscillator (or ceramic resonator) has started and stabilized, an oscillator start-up timer is included. It is a simple 10-bit counter that counts 1024 Tosc cycles before releasing the oscillator clock to the rest of the system. The time-out period is designated as Tost. The Tost time is involved every time the oscillator has to restart (i.e., on POR, BOR and wake-up from Sleep). The oscillator start-up timer is applied to the LP Oscillator, XT, XTL, and HS modes (upon wake-up from Sleep, POR and BOR) for the primary oscillator.

TABLE 19-2: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	FOS1	FOS0	FPR3	FPR2	FPR1	FPR0	OSC2 Function
EC	Primary	1	1	1	0	1	1	CLKO
ECIO	Primary	1	1	1	1	0	0	I/O
EC w/ PLL 4x	Primary	1	1	1	1	0	1	I/O
EC w/ PLL 8x	Primary	1	1	1	1	1	0	I/O
EC w/ PLL 16x	Primary	1	1	1	1	1	1	I/O
ERC	Primary	1	1	1	0	0	1	CLKO
ERCIO	Primary	1	1	1	0	0	0	I/O
XT	Primary	1	1	0	1	0	0	OSC2
XT w/ PLL 4x	Primary	1	1	0	1	0	1	OSC2
XT w/ PLL 8x	Primary	1	1	0	1	1	0	OSC2
XT w/ PLL 16x	Primary	1	1	0	1	1	1	OSC2
XTL	Primary	1	1	0	0	0	x	OSC2
HS	Primary	1	1	0	0	1	x	OSC2
LP	Secondary	0	0	-	-	-	-	(Notes 1, 2)
FRC	Internal FRC	0	1	-	-	-	-	(Notes 1, 2)
LPRC	Internal LPRC	1	0	-	-	-	-	(Notes 1, 2)

Note 1: OSC2 pin function is determined by the Primary Oscillator mode selection (FPR<3:0>).
2: Note that OSC1 pin cannot be used as an I/O pin, even if the secondary oscillator or an internal clock source is selected at all times.

19.2.3 LP OSCILLATOR CONTROL

Enabling the LP oscillator is controlled with two elements:

1. The current oscillator group bits $\mathrm{COSC}<1: 0>$.
2. The LPOSCEN bit (OSCCON register).

The LP oscillator is ON (even during Sleep mode) if LPOSCEN $=1$. The LP oscillator is the device clock if:

- $\mathrm{COSC}<1: 0>=00$ (LP selected as main oscillator) and
- LPOSCEN = 1

Keeping the LP oscillator ON at all times allows for a fast switch to the 32 kHz system clock for lower power operation. Returning to the faster main oscillator will still require a start-up time

19.2.4 PHASE LOCKED LOOP (PLL)

The PLL multiplies the clock which is generated by the primary oscillator or Fast RC oscillator. The PLL is selectable to have either gains of $x 4, x 8$, and $\times 16$. Input and output frequency ranges are summarized in Table 19-3.

TABLE 19-3: PLL FREQUENCY RANGE

Fin	PLL Multiplier	Fout
$4 \mathrm{MHz}-10 \mathrm{MHz}$	x 4	$16 \mathrm{MHz}-40 \mathrm{MHz}$
$4 \mathrm{MHz}-10 \mathrm{MHz}$	x 8	$32 \mathrm{MHz}-80 \mathrm{MHz}$
$4 \mathrm{MHz}-7.5 \mathrm{MHz}$	x 16	$64 \mathrm{MHz}-120 \mathrm{MHz}$

The PLL features a lock output which is asserted when the PLL enters a phase locked state. Should the loop fall out of lock (e.g., due to noise), the lock signal will be rescinded. The state of this signal is reflected in the read-only LOCK bit in the OSCCON register.

19.2.5 FAST RC OSCILLATOR (FRC)

The FRC oscillator is a fast (7.37 MHz $\pm 2 \%$ nominal) internal RC oscillator. This oscillator is intended to provide reasonable device operating speeds without the use of an external crystal, ceramic resonator or RC network.

The dsPIC30F operates from the FRC oscillator when the current oscillator selection control bits in the OSCCON register ($O S C C O N<13: 12>$) are set to ' 01 '.
The four bit field specified by TUN $<3: 0>$ (OSCCON $<15: 14>$ and $O S C C O N<11: 10>$) allows the user to tune the internal fast RC oscillator (nominal 7.37 MHz). The user can tune the FRC oscillator within a range of -12% (or -960 kHz) to $+10.5 \%$ (or +840 kHz) in steps of 1.50% around the factory calibrated setting, see Table 19-4.

TABLE 19-4: FRC TUNING

TUN<3:0> Bits	FRC Frequency
0111	$+10.5 \%$
0110	$+9.0 \%$
0101	$+7.5 \%$
0100	$+6.0 \%$
0011	$+4.5 \%$
0010	$+3.0 \%$
0001	$+1.5 \%$
0000	Center Frequency (oscillator is running at calibrated frequency $)$
1111	-1.5%
1110	-3.0%
1101	-4.5%
1100	-6.0%
1011	-7.5%
1010	-9.0%
1001	-10.5%
1000	-12.0%

19.2.6 LOW-POWER RC OSCILLATOR (LPRC)

The LPRC oscillator is a component of the Watchdog Timer (WDT) and oscillates at a nominal frequency of 512 kHz . The LPRC oscillator is the clock source for the Power-up Timer (PWRT) circuit, WDT, and clock monitor circuits. It may also be used to provide a low frequency clock source option for applications where power consumption is critical and timing accuracy is not required
The LPRC oscillator is always enabled at a Power-on Reset because it is the clock source for the PWRT. After the PWRT expires, the LPRC oscillator will remain on if one of the following is true:

- The Fail-Safe Clock Monitor is enabled
- The WDT is enabled
- The LPRC oscillator is selected as the system clock via the $\mathrm{COSC}<1: 0>$ control bits in the OSCCON register
If one of the above conditions is not true, the LPRC will shut-off after the PWRT expires.

Note 1: OSC2 pin function is determined by the Primary Oscillator mode selection (FPR<3:0>).
2: OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock source is selected at all times.

dsPIC30F2010

19.2.7 FAIL-SAFE CLOCK MONITOR

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by appropriately programming the FCKSM Configuration bits (Clock Switch and Monitor Selection bits) in the Fosc device Configuration register. If the FSCM function is enabled, the LPRC Internal oscillator will run at all times (except during Sleep mode) and will not be subject to control by the SWDTEN bit.
In the event of an oscillator failure, the FSCM will generate a clock failure trap event and will switch the system clock over to the FRC oscillator. The user will then have the option to either attempt to restart the oscillator or execute a controlled shutdown. The user may decide to treat the trap as a warm Reset by simply loading the Reset address into the oscillator fail trap vector. In this event, the CF (Clock Fail) status bit (OSCCON $<3>$) is also set whenever a clock failure is recognized.

In the event of a clock failure, the WDT is unaffected and continues to run on the LPRC clock.

If the oscillator has a very slow start-up time coming out of POR, BOR or Sleep, it is possible that the PWRT timer will expire before the oscillator has started. In such cases, the FSCM will be activated and the FSCM will initiate a clock failure trap, and the COSC $<1: 0>$ bits are loaded with FRC oscillator selection. This will effectively shut-off the original oscillator that was trying to start.

The user may detect this situation and restart the oscillator in the clock fail trap ISR.

Upon a clock failure detection, the FSCM module will initiate a clock switch to the FRC Oscillator as follows:

1. The COSC bits (OSCCON<13:12>) are loaded with the FRC Oscillator selection value.
2. CF bit is set ($\mathrm{OSCCON}<3>$).
3. OSWEN control bit (OSCCON<0>) is cleared.

For the purpose of clock switching, the clock sources are sectioned into four groups:

1. Primary
2. Secondary
3. Internal FRC
4. Internal LPRC

The user can switch between these functional groups, but cannot switch between options within a group. If the primary group is selected, then the choice within the group is always determined by the FPR<3:0> Configuration bits.

The OSCCON register holds the control and Status bits related to clock switching.

- $\operatorname{COSC}<1: 0>$: Read-only status bits always reflect the current oscillator group in effect.
- NOSC<1:0>: Control bits which are written to indicate the new oscillator group of choice.
- On POR and BOR, COSC<1:0> and NOSC $<1: 0>$ are both loaded with the Configuration bit values $\mathrm{FOS}<1: 0>$.
- LOCK: The LOCK status bit indicates a PLL lock.
- CF: Read-only status bit indicating if a clock fail detect has occurred.
- OSWEN: Control bit changes from a ' 0 ' to a ' 1 ' when a clock transition sequence is initiated. Clearing the OSWEN control bit will abort a clock transition in progress (used for hang-up situations).
If Configuration bits FCKSM $<1: 0>=1 \mathrm{x}$, then the clock switching and fail-safe clock monitor functions are disabled. This is the default Configuration bit setting.
If clock switching is disabled, then the $\mathrm{FOS}<1: 0>$ and FPR $<3: 0>$ bits directly control the oscillator selection and the $\operatorname{COSC}<1: 0>$ bits do not control the clock selection. However, these bits will reflect the clock source selection.

Note: The application should not attempt to switch to a clock of frequency lower than 100 KHz when the fail-safe clock monitor is enabled. If such clock switching is performed, the device may generate an oscillator fail trap and switch to the Fast RC oscillator.

19.2.8 PROTECTION AGAINST ACCIDENTAL WRITES TO OSCCON

A write to the OSCCON register is intentionally made difficult because it controls clock switching and clock scaling.

To write to the OSCCON low byte, the following code sequence must be executed without any other instructions in between:

- Byte Write "0x46" to OSCCON low
- Byte Write "0x57" to OSCCON low

Byte Write is allowed for one instruction cycle. Write the desired value or use bit manipulation instruction.

To write to the OSCCON high byte, the following instructions must be executed without any other instructions in between:

- Byte Write "0x78" to OSCCON high
- Byte Write "0x9A" to OSCCON high

Byte Write is allowed for one instruction cycle. Write the desired value or use bit manipulation instruction.

dsPIC30F2010

19.3 Reset

The dsPIC30F2010 differentiates between various kinds of Reset:
a) Power-on Reset (POR)
b) $\overline{M C L R}$ Reset during normal operation
c) $\overline{\mathrm{MCLR}}$ Reset during Sleep
d) Watchdog Timer (WDT) Reset (during normal operation)
e) Programmable Brown-out Reset (BOR)
f) RESET Instruction
g) Reset cause by trap lockup (TRAPR)
h) Reset caused by illegal opcode, or by using an uninitialized W register as an Address Pointer (IOPUWR)

Different registers are affected in different ways by various Reset conditions. Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register are set or cleared differently in different Reset situations, as indicated in Table 19-5. These bits are used in software to determine the nature of the Reset.
A block diagram of the on-chip Reset circuit is shown in Figure 19-2.
A $\overline{M C L R}$ noise filter is provided in the $\overline{M C L R}$ Reset path. The filter detects and ignores small pulses.
Internally generated Resets do not drive $\overline{M C L R}$ pin low.

FIGURE 19-2: RESET SYSTEM BLOCK DIAGRAM

19.3.1 POR: POWER-ON RESET

A power-on event will generate an internal POR pulse when a VDD rise is detected. The Reset pulse will occur at the POR circuit threshold voltage (VPOR), which is nominally 1.85 V . The device supply voltage characteristics must meet specified starting voltage and rise rate requirements. The POR pulse will Reset a POR timer and place the device in the Reset state. The POR also selects the device clock source identified by the oscillator configuration fuses.

The POR circuit inserts a small delay, TPOR, which is nominally $10 \mu \mathrm{~s}$ and ensures that the device bias circuits are stable. Furthermore, a user selected powerup time-out (TPWRT) is applied. The TpWRT parameter is based on device Configuration bits and can be 0 ms (no delay), $4 \mathrm{~ms}, 16 \mathrm{~ms}$ or 64 ms . The total delay is at device power-up TPOR + TPWRT. When these delays have expired, SYSRST will be negated on the next leading edge of the Q1 clock, and the PC will jump to the Reset vector.
The timing for the SYSRST signal is shown in Figure 19-3 through Figure 19-5.

dsPIC30F2010

FIGURE 19-3: TIME-OUT SEQUENCE ON POWER-UP ($\overline{M C L R}$ TIED TO VDD)

FIGURE 19-4: TIME-OUT SEQUENCE ON POWER-UP ($\overline{M C L R}$ NOT TIED TO VDD): CASE 1

FIGURE 19-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

19.3.1.1 POR with Long Crystal Start-up Time (with FSCM Enabled)

The oscillator start-up circuitry is not linked to the POR circuitry. Some crystal circuits (especially low frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after the POR timer and the PWRT have expired:

- The oscillator circuit has not begun to oscillate.
- The oscillator start-up timer has NOT expired (if a crystal oscillator is used).
- The PLL has not achieved a LOCK (if PLL is used).
If the FSCM is enabled and one of the above conditions is true, then a clock failure trap will occur. The device will automatically switch to the FRC oscillator and the user can switch to the desired crystal oscillator in the trap ISR.

19.3.1.2 Operating without FSCM and PWRT

If the FSCM is disabled and the Power-up Timer (PWRT) is also disabled, then the device will exit rapidly from Reset on power-up. If the clock source is FRC, LPRC, EXTRC or EC, it will be active immediately
If the FSCM is disabled and the system clock has not started, the device will be in a frozen state at the Reset vector until the system clock starts. From the user's perspective, the device will appear to be in Reset until a system clock is available.

19.3.2 BOR: PROGRAMMABLE BROWN-OUT RESET

The BOR module is based on an internal voltage reference circuit. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (i.e., missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

The BOR module allows selection of one of the following voltage trip points:

- 2.6V-2.71V
- 4.1V-4.4V
- 4.58V-4.73V

Note: The BOR voltage trip points indicated here are nominal values provided for design guidance only.

A BOR will generate a Reset pulse which will reset the device. The BOR will select the clock source, based on the device Configuration bit values ($\mathrm{FOS}<1: 0>$ and FPR $<3: 0>$). Furthermore, if an Oscillator mode is selected, the BOR will activate the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, then the clock will be held until the LOCK bit (OSCCON<5>) is ' 1 '.
Concurrently, the POR time-out (TPOR) and the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT $=0$ and a crystal oscillator is being used, then a nominal delay of TFSCM $=100 \mu \mathrm{~s}$ is applied. The total delay in this case is (TPOR + TFSCM).

The BOR status bit ($\mathrm{RCON}<1>$) will be set to indicate that a BOR has occurred. The BOR circuit, if enabled, will continue to operate while in Sleep or Idle modes and will reset the device should VDD fall below the BOR threshold voltage.

FIGURE 19-6: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW Vdd POWER-UP)

Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
2: R should be suitably chosen so as to make sure that the voltage drop across R does not violate the device's electrical specification.

3: R1 should be suitably chosen so as to limit any current flowing into $\overline{M C L R}$ from external capacitor C , in the event of $\overline{M C L R} / V P P$ pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

Note: Dedicated supervisory devices, such as the MCP1XX and MCP8XX, may also be used as an external Power-on Reset circuit.

dsPIC30F2010

Table 19-5 shows the Reset conditions for the RCON Register. Since the control bits within the RCON register are R/W, the information in the table implies that all the bits are negated prior to the action specified in the condition column.

TABLE 19-5: INITIALIZATION CONDITION FOR RCON REGISTER CASE 1

Condition	Program Counter	TRAPR	IOPUWR	EXTR	SWR	WDTO	IDLE	SLEEP	POR	BOR
Power-on Reset	0×000000	0	0	0	0	0	0	0	1	1
Brown-out Reset	0×000000	0	0	0	0	0	0	0	0	1
MCLR Reset during normal operation	0×000000	0	0	1	0	0	0	0	0	0
Software Reset during normal operation	0×000000	0	0	0	1	0	0	0	0	0
MCLR Reset during Sleep	0×000000	0	0	1	0	0	0	1	0	0
$\overline{\text { MCLR Reset during Idle }}$	0×000000	0	0	1	0	0	1	0	0	0
WDT Time-out Reset	0×000000	0	0	0	0	1	0	0	0	0
WDT Wake-up	PC +2	0	0	0	0	1	0	1	0	0
Interrupt Wake-up from Sleep	PC +2	0	0	0	0	0	0	1	0	0
Clock Failure Trap	0×000004	0	0	0	0	0	0	0	0	0
Trap Reset	0×000000	1	0	0	0	0	0	0	0	0
Illegal Operation Trap	0×000000	0	1	0	0	0	0	0	0	0

Legend: $u=$ unchanged, $x=$ unknown, - = unimplemented bit, read as ' 0 '
Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.
Table 19-6 shows a second example of the bit conditions for the RCON Register. In this case, it is not assumed the user has set/cleared specific bits prior to action specified in the condition column.

TABLE 19-6: INITIALIZATION CONDITION FOR RCON REGISTER CASE 2

Condition	Program Counter	TRAPR	IOPUWR	EXTR	SWR	WDTO	IDLE	SLEEP	POR	BOR
Power-on Reset	0x000000	0	0	0	0	0	0	0	1	1
Brown-out Reset	0x000000	u	u	u	u	u	u	u	0	1
$\overline{\text { MCLR }}$ Reset during normal operation	0x000000	u	u	1	0	0	0	0	u	u
Software Reset during normal operation	0x000000	u	u	0	1	0	0	0	u	u
$\overline{\text { MCLR }}$ Reset during Sleep	0x000000	u	u	1	u	0	0	1	u	u
$\overline{\mathrm{MCLR}}$ Reset during Idle	0x000000	u	u	1	u	0	1	0	u	u
WDT Time-out Reset	0x000000	u	u	0	0	1	0	0	u	u
WDT Wake-up	PC + 2	u	u	u	u	1	u	1	u	u
Interrupt Wake-up from Sleep	$\mathrm{PC}+2^{(1)}$	u	u	u	u	u	u	1	u	u
Clock Failure Trap	0x000004	u	u	u	u	u	u	u	u	u
Trap Reset	0x000000	1	u	u	u	u	u	u	u	u
Illegal Operation Reset	0x000000	u	1	u	u	u	u	u	u	u

Legend: $u=$ unchanged, $x=$ unknown, $-=$ unimplemented bit, read as ' 0 '
Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.

dsPIC30F2010

19.4 Watchdog Timer (WDT)

19.4.1 WATCHDOG TIMER OPERATION

The primary function of the Watchdog Timer (WDT) is to reset the processor in the event of a software malfunction. The WDT is a free running timer, which runs off an on-chip RC oscillator, requiring no external component. Therefore, the WDT timer will continue to operate even if the main processor clock (e.g., the crystal oscillator) fails.

19.4.2 ENABLING AND DISABLING THE WDT

The Watchdog Timer can be "Enabled" or "Disabled" only through a Configuration bit (FWDTEN) in the Configuration register FWDT.
Setting FWDTEN = 1 enables the Watchdog Timer. The enabling is done when programming the device. By default, after chip-erase, FWDTEN bit = 1. Any device programmer capable of programming dsPIC30F devices allows programming of this and other Configuration bits.
If enabled, the WDT will increment until it overflows or "times out". A WDT time-out will force a device Reset (except during Sleep). To prevent a WDT time-out, the user must clear the Watchdog Timer using a CLRWDT instruction.
If a WDT times out during Sleep, the device will wakeup. The WDTO bit in the RCON register will be cleared to indicate a wake-up resulting from a WDT time-out.
Setting FWDTEN $=0$ allows user software to enable/ disable the Watchdog Timer via the SWDTEN ($\mathrm{RCON}<5>$) control bit.

19.5 Power-Saving Modes

There are two power-saving states that can be entered through the execution of a special instruction, PWRSAV.
These are: Sleep and Idle.
The format of the PWRSAV instruction is as follows:
PWRSAV <parameter>, where 'parameter' defines Idle or Sleep mode.

19.5.1 SLEEP MODE

In Sleep mode, the clock to the CPU and peripherals is shutdown. If an on-chip oscillator is being used, it is shutdown.

The fail-safe clock monitor is not functional during Sleep, since there is no clock to monitor. However, LPRC clock remains active if WDT is operational during Sleep.
The Brown-out protection circuit and the Low Voltage Detect circuit, if enabled, will remain functional during Sleep.

The processor wakes up from Sleep if at least one of the following conditions has occurred:

- any interrupt that is individually enabled and meets the required priority level
- any Reset (POR, BOR and $\overline{\text { MCLR }}$)
- WDT time-out

On waking up from Sleep mode, the processor will restart the same clock that was active prior to entry into Sleep mode. When clock switching is enabled, bits $\operatorname{COSC}<1: 0>$ will determine the oscillator source that will be used on wake-up. If clock switch is disabled, then there is only one system clock.

Note: If a POR or BOR occurred, the selection of the oscillator is based on the $\mathrm{FOS}<1: 0>$ and FPR<3:0> Configuration bits.

If the clock source is an oscillator, the clock to the device will be held off until OST times out (indicating a stable oscillator). If PLL is used, the system clock is held off until LOCK $=1$ (indicating that the PLL is stable). In either case, TPOR, Tlock and TPWRT delays are applied.
If EC, FRC, LPRC or ERC oscillators are used, then a delay of TPOR ($\sim 10 \mu \mathrm{~s}$) is applied. This is the smallest delay possible on wake-up from Sleep.

Moreover, if LP oscillator was active during Sleep, and LP is the oscillator used on wake-up, then the start-up delay will be equal to TPOR. PWRT delay and OST timer delay are not applied. In order to have the smallest possible start-up delay when waking up from Sleep, one of these faster wake-up options should be selected before entering Sleep.
Any interrupt that is individually enabled (using the corresponding IE bit) and meets the prevailing priority level will be able to wake-up the processor. The processor will process the interrupt and branch to the ISR. The Sleep status bit in RCON register is set upon wake-up.

Note: In spite of various delays applied (TPOR, Tlock and TPWRT), the crystal oscillator (and PLL) may not be active at the end of the time-out (e.g., for low-frequency crystals. In such cases), if FSCM is enabled, then the device will detect this as a clock failure and process the clock failure trap, the FRC oscillator will be enabled, and the user will have to re-enable the crystal oscillator. If FSCM is not enabled, then the device will simply suspend execution of code until the clock is stable, and will remain in Sleep until the oscillator clock has started.

dsPIC30F2010

All Resets will wake-up the processor from Sleep mode. Any Reset, other than POR, will set the Sleep status bit. In a POR, the Sleep bit is cleared.

If Watchdog Timer is enabled, then the processor will wake-up from Sleep mode upon WDT time-out. The Sleep and WDTO status bits are both set.

19.5.2 IDLE MODE

In Idle mode, the clock to the CPU is shutdown while peripherals keep running. Unlike Sleep mode, the clock source remains active.
Several peripherals have a control bit in each module, that allows them to operate during Idle.
LPRC fail-safe clock remains active if clock failure detect is enabled.

The processor wakes up from Idle if at least one of the following conditions is true:

- on any interrupt that is individually enabled (IE bit is ' 1 ') and meets the required priority level
- on any Reset (POR, BOR, $\overline{\mathrm{MCLR}})$
- on WDT time-out

Upon wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction.

Any interrupt that is individually enabled (using IE bit) and meets the prevailing priority level will be able to wake-up the processor. The processor will process the interrupt and branch to the ISR. The Idle status bit in RCON register is set upon wake-up.
Any Reset, other than POR, will set the Idle status bit. On a POR, the Idle bit is cleared.
If Watchdog Timer is enabled, then the processor will wake-up from Idle mode upon WDT time-out. The Idle and WDTO status bits are both set.

Unlike wake-up from Sleep, there are no time delays involved in wake-up from Idle.

19.6 Device Configuration Registers

The Configuration bits in each device Configuration register specify some of the device modes and are programmed by a device programmer, or by using the InCircuit Serial Programming (ICSP) programming capability feature of the device. Each device Configuration register is a 24-bit register, but only the lower 16 bits of each register are used to hold configuration data. There are four device Configuration registers available to the user:

1. FOSC (0xF80000): Oscillator Configuration Register
2. FWDT (0xF80002): Watchdog Timer Configuration Register
3. FBORPOR (0xF80004): BOR and POR Configuration Register
4. FGS (0xF8000A): General Code Segment Configuration Register

The placement of the Configuration bits is automatically handled when you select the device in your device programmer. The desired state of the Configuration bits may be specified in the source code (dependent on the language tool used), or through the programming interface. After the device has been programmed, the application software may read the Configuration bit values through the table read instructions. For additional information, please refer to the programming specifications of the device.

Note: If the code protection configuration fuse bits (FGS<GCP> and FGS<GWRP>) have been programmed, an erase of the entire code-protected device is only possible at voltages VDD $\geq 4.5 \mathrm{~V}$.

19.7 In-Circuit Debugger

When MPLAB ${ }^{\circledR}$ ICD2 is selected as a Debugger, the InCircuit Debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. When the device has this feature enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

One of four pairs of debug I/O pins may be selected by the user using configuration options in MPLAB IDE. These pin pairs are named EMUD/EMUC, EMUD1/ EMUC1, EMUD2/EMUC2 and EMUD3/EMUC3.
In each case, the selected EMUD pin is the Emulation/ Debug Data line, and the EMUC pin is the Emulation/ Debug Clock line. These pins will interface to the MPLAB ICD 2 module available from Microchip. The selected pair of Debug I/O pins is used by MPLAB ICD 2 to send commands and receive responses, as well as to send and receive data. To use the In-Circuit Debugger function of the device, the design must implement ICSP connections to $\overline{M C L R}$, VDD, Vss, PGC, PGD and the selected EMUDx/EMUCx pin pair.
This gives rise to two possibilities:

1. If EMUD/EMUC is selected as the Debug I/O pin pair, then only a 5 -pin interface is required, as the EMUD and EMUC pin functions are multiplexed with the PGD and PGC pin functions in all dsPIC30F devices.
2. If EMUD1/EMUC1, EMUD2/EMUC2 or EMUD3/ EMUC3 is selected as the Debug I/O pin pair, then a 7 -pin interface is required, as the EMUDx/EMUCx pin functions ($x=1,2$ or 3) are not multiplexed with the PGD and PGC pin functions.
TABLE 19-7: SYSTEM INTEGRATION REGISTER MAP

SFR Name	Addr.	Bit 15		Bit 14		Bit 12		Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State			
RCON	0740		TRAPR	IOPUWR	BGST	-		-	-	-	-	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Depen	ds on ty	of Rester	
OSCCON	0742		TUN3	TUN2	cosc<1:0>			TUN1	1 TUN0	NOSC<1:0>		POST<1:0>		LOCK	-	CF	-	LPOSCEN	OSWEN	Depends on Configuration bits.			
Legend: $u=$ uninitialized bit																							
Note:	Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.																						
TABLE 19-8: DEVICE CONFIGURATION REGISTER MAP																							
File Name	Addr.			Bits 23-16	Bit 15 B		Bit 14		Bit 13	Bit 12	Bit 11	Bit 10		Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FOSC		0000		-	FCKSM<1:0>				-	-	-		-	FOS<1:0>		-	-	-	-	FPR<3:0>			
FWDT		0002		-	FWDTEN		-		-	-	-		-	-	-	-	-	FWPSA	<1:0>		FWP	B<3:0>	
FBORPOR		0004		-	MCLREN			-	-	-	-		WMPIN	HPOL	LPOL	BOREN	-	BORV	<1:0>	-	-	FPW	<1:0>
FGS		000A		-	-			-	-	-	-		-	-	-	-	-	-	-	-	-	GCP	GWRP

dsPIC30F2010

NOTES:

dsPIC30F2010

20.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual' (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F/ 33F Programmer's Reference Manual" (DS70157).

The dsPIC30F instruction set adds many enhancements to the previous PIC^{\circledR} MCU instruction sets, while maintaining an easy migration from PIC MCU instruction sets.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.
Each single-word instruction is a 24 -bit word divided into an 8 -bit opcode which specifies the instruction type, and one or more operands which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- Literal operations
- DSP operations
- Control operations

Table 20-1 shows the general symbols used in describing the instructions.

The dsPIC30F instruction set summary in Table 20-2 lists all the instructions along with the status flags affected by each instruction.
Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier
However, word or byte-oriented file register instructions have two operands:
- The file register specified by the value ' f '
- The destination, which could either be the file register ' f ' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value, or indirectly by the contents of register 'Wb')
The literal instructions that involve data movement may use some of the following operands:
- A literal value to be loaded into a W register or file register (specified by the value of ' k ')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier
The MAC class of DSP instructions may use some of the following operands:
- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication, and may include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift, specified by a W register 'Wn' or a literal value

The control instructions may use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions
All instructions are a single word, except for certain double word instructions, which were made double word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are ' 0 's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

dsPIC30F2010

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions, but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction, require either two or
three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double word moves require two cycles. The double word instructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the "dsPIC30F/33F Programmer's Reference Manual" (DS70157).

TABLE 20-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
\#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
\{ \}	Optional field or operation
<n:m>	Register bit field
. b	Byte mode selection
.d	Double word mode selection
. S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators $\{\mathrm{A}, \mathrm{B}\}$
AWB	Accumulator write-back destination address register $\in\{$ W13, [W13] + = 2\}
bit4	4-bit bit selection field (used in word addressed instructions) $\in\{0 \ldots .15\}$
C, DC, N, OV, Z	MCU status bits: Carry, Digit Carry, Negative, Overflow, Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address $\in\{0 \times 0000 \ldots 0 \times 1 \mathrm{FFF}\}$
lit1	1 -bit unsigned literal $\in\{0,1\}$
lit4	4-bit unsigned literal $\in\{0 . . .15\}$
lit5	5 -bit unsigned literal $\in\{0 . . .31\}$
lit8	8-bit unsigned literal $\in\{0 \ldots 255\}$
lit10	10-bit unsigned literal $\in\{0 \ldots 255\}$ for Byte mode, $\{0: 1023\}$ for Word mode
lit14	14-bit unsigned literal $\in\{0 . .16384\}$
lit16	16 -bit unsigned literal $\in\{0 . . .65535\}$
lit23	23-bit unsigned literal $\in\{0 . . .8388608\}$; LSB must be 0
None	Field does not require an entry, may be blank
OA, OB, SA, SB	DSP status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10 -bit signed literal $\in\{-512 \ldots . .511\}$
Slit16	16-bit signed literal $\in\{-32768 . . .32767\}$
Slit6	6 -bit signed literal $\in\{-16 \ldots 16\}$

dsPIC30F2010

TABLE 20-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wb	Base W register $\in\left\{\begin{array}{l}\text { W0..W15 }\end{array}\right.$
Wd	Destination W register $\in\left\{\begin{array}{l}\text { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] \} }\end{array}\right.$
Wdo	Destination W register \in \{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] \}
Wm, Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions \in \{W4 * W4,W5 * W5,W6 * W6,W7 * W7\}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions \in \{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7 \}
Wn	One of 16 working registers $\in\{$ W0..W15\}
Wnd	One of 16 destination working registers $\in\{$ W0..W15\}
Wns	One of 16 source working registers $\in\{$ W0..W15\}
WREG	W0 (working register used in file register instructions)
Ws	Source W register $\in\{$ Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] \}
Wso	Source W register \in $\{$ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] \}
Wx	$\begin{aligned} & \text { X data space prefetch address register for DSP instructions } \\ & \in\{[\mathrm{W} 8]+=6,[\mathrm{~W} 8]+=4,[\mathrm{~W} 8]+=2,[\mathrm{~W} 8],[\mathrm{W} 8]-=6,[\mathrm{~W} 8]-=4,[\mathrm{~W} 8]-=2, \\ & {[\mathrm{W} 9]+=6,[\mathrm{~W} 9]+=4,[\mathrm{~W} 9]+=2,[\mathrm{~W} 9],[\mathrm{W} 9]-=6,[\mathrm{~W} 9]-=4,[\mathrm{~W} 9]-=2,} \\ & [\mathrm{~W} 9+\mathrm{W} 12], \text { none }\} \end{aligned}$
Wxd	X data space prefetch destination register for DSP instructions $\in\{$ W4..W7\}
Wy	Y data space prefetch address register for DSP instructions $\in\{[\mathrm{W} 10]+=6,[\mathrm{~W} 10]+=4,[\mathrm{~W} 10]+=2,[\mathrm{~W} 10],[\mathrm{W} 10]-=6,[\mathrm{~W} 10]-=4,[\mathrm{~W} 10]-=2$, $[W 11]+=6,[W 11]+=4,[W 11]+=2,[W 11],[W 11]-=6,[W 11]-=4,[W 11]-=2$, [W11 + W12], none\}
Wyd	Y data space prefetch destination register for DSP instructions $\in\{$ W4..W7\}

dsPIC30F2010

TABLE 20-2: INSTRUCTION SET OVERVIEW

Base Instr \#	Assembly Mnemonic		Assembly Syntax	Description	\# of word s	\# of cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB, SA, SB
		ADD	f	$\mathrm{f}=\mathrm{f}+\mathrm{WREG}$	1	1	C,DC,N,OV,Z
		ADD	f, WREG	WREG = $\mathrm{f}+\mathrm{WREG}$	1	1	C,DC,N,OV,Z
		ADD	\#lit10,Wn	$\mathrm{Wd}=\mathrm{lit10}+\mathrm{Wd}$	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,wd	$\mathrm{Wd}=\mathrm{Wb}+\mathrm{Ws}$	1	1	C,DC,N,OV,Z
		ADD	Wb,\#lit5,Wd	$\mathrm{Wd}=\mathrm{Wb}+\mathrm{lit5}$	1	1	C,DC,N,OV,Z
		ADD	Wso,\#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	$\mathrm{f}=\mathrm{f}+\mathrm{WREG}+(\mathrm{C})$	1	1	C,DC,N,OV,Z
		ADDC	f, WREG	WREG = $\mathrm{f}+\mathrm{WREG}+(\mathrm{C})$	1	1	C,DC,N,OV,Z
		ADDC	\#lit10,Wn	$\mathrm{Wd}=\mathrm{lit} 10+\mathrm{Wd}+(\mathrm{C})$	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,wd	$W d=W b+W s+(C)$	1	1	C,DC,N,OV,Z
		ADDC	Wb,\#lit5,Wd	$\mathrm{Wd}=\mathrm{Wb}+\mathrm{lit} 5+(\mathrm{C})$	1	1	C,DC,N,OV,Z
3	AND	And	f	$f=f . A N D$. WREG	1	1	N, Z
		And	f,wREG	WREG = f.AND. WREG	1	1	N, Z
		And	\#lit10,Wn	Wd = lit10.AND. Wd	1	1	N,Z
		And	Wb,Ws,wd	$\mathrm{Wd}=\mathrm{Wb}$. AND. Ws	1	1	N,Z
		And	Wb,\#lit5,Wd	$\mathrm{Wd}=\mathrm{Wb}$. AND. lit5	1	1	N,Z
4	ASR	ASR	f	$\mathrm{f}=$ Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns, Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,\#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
5	BCLR	BCLR	f,\#bit4	Bit Clear f	1	1	None
		BCLR	Ws,\#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C, Expr	Branch if Carry	1	1 (2)	None
		BRA	GE, Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT, Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT, Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N, Expr	Branch if Negative	1	1 (2)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ, Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA, Expr	Branch if accumulator A overflow	1	1 (2)	None
		BRA	OB, Expr	Branch if accumulator B overflow	1	1 (2)	None
		BRA	ov, Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA, Expr	Branch if accumulator A saturated	1	1 (2)	None
		BRA	SB, Expr	Branch if accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	z, Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,\#bit4	Bit Set f	1	1	None
		BSET	Ws, \#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,wb	Write C bit to Ws<Wb>	1	1	None
		BSW. z	Ws, wb	Write Z bit to $\mathrm{Ws}<\mathrm{Wb}>$	1	1	None
9	BTG	BTG	f,\#bit4	Bit Toggle f	1	1	None
		BTG	Ws,\#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,\#bit4	Bit Test f, Skip if Clear	1	$\begin{gathered} 1 \\ (2 \text { or } 3) \\ \hline \end{gathered}$	None
		BTSC	Ws, \#bit4	Bit Test Ws, Skip if Clear	1	$\begin{gathered} 1 \\ (2 \text { or } 3) \\ \hline \end{gathered}$	None

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr \#	Assembly Mnemonic		Assembly Syntax	Description	\# of word s	\# of cycles	Status Flags Affected
11	BTSS	BTSS	f,\#bit4	Bit Test f, Skip if Set	1	$\begin{gathered} 1 \\ (2 \text { or } 3) \\ \hline \end{gathered}$	None
		BTSS	Ws, \#bit4	Bit Test Ws, Skip if Set	1	$\begin{gathered} 1 \\ (2 \text { or } 3) \\ \hline \end{gathered}$	None
12	BTST	BTST	f,\#bit4	Bit Test f	1	1	Z
		BTST. C	Ws,\#bit4	Bit Test Ws to C	1	1	C
		BTST. Z	Ws, \#bit4	Bit Test Ws to Z	1	1	Z
		BTST. C	Ws, Wb	Bit Test Ws<Wb> to C	1	1	C
		BTST.z	Ws, Wb	Bit Test Ws<Wb> to Z	1	1	Z
13	BTSTS	BTSTS	f,\#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,\#bit4	Bit Test Ws to C, then Set	1	1	C
		BTSTS. z	Ws,\#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	$\mathrm{f}=0 \times 0000$	1	1	None
		CLR	WREG	WREG $=0 \times 0000$	1	1	None
		CLR	Ws	$\mathrm{Ws}=0 \times 0000$	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AwB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	$\mathrm{f}=\overline{\mathrm{f}}$	1	1	N,Z
		COM	f,WREG	WREG $=\bar{f}$	1	1	N, Z
		COM	Ws,wd	$\mathrm{Wd}=\overline{\mathrm{Ws}}$	1	1	N, Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,\#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb, Ws	Compare Wb with Ws (Wb - Ws)	1	1	C,DC,N,OV,Z
19	CPo	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,\#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb, Ws	Compare Wb with Ws, with Borrow $(\mathrm{Wb}-\mathrm{Ws}-\overline{\mathrm{C}})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	$\begin{gathered} 1 \\ (2 \text { or } 3) \\ \hline \end{gathered}$	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	$\begin{gathered} 1 \\ (2 \text { or } 3) \\ \hline \end{gathered}$	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	$\begin{gathered} 1 \\ (2 \text { or } 3) \\ \hline \end{gathered}$	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if \neq	1	$\begin{gathered} 1 \\ (2 \text { or } 3) \\ \hline \end{gathered}$	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	C
26	DEC	DEC	£	$\mathrm{f}=\mathrm{f}-1$	1	1	C,DC,N,OV,Z
		DEC	f, WREG	WREG = $\mathrm{f}-1$	1	1	C,DC,N,OV,
		DEC	Ws,wd	$\mathrm{Wd}=\mathrm{Ws}-1$	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	$\mathrm{f}=\mathrm{f}-2$	1	1	C,DC,N,OV,Z
		DEC2	£, WREG	WREG = f -2	1	1	C,DC,N,OV,
		DEC2	Ws,wd	$\mathrm{Wd}=\mathrm{Ws}-2$	1	1	C,DC,N,OV,Z
28	DISI	DISI	\#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm, Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C, OV
		DIV.SD	Wm, Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C, OV
		DIV.U	Wm, Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
		DIV.UD	Wm, Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C, OV
30	DIVF	DIVF	Wm, Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C, OV
31	Do	DO	\#lit14, Expr	Do code to PC+Expr, lit14 + 1 times	2	2	None
		DO	Wn, Expr	Do code to PC+Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm, Acc, Wx, Wy , Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm, Acc , Wx , Wy , Wxd	Euclidean Distance	1	1	$\begin{aligned} & \text { OA,OB,OAB, } \\ & \text { SA,SB,SAB } \end{aligned}$

dsPIC30F2010

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr \#	Assembly Mnemonic		Assembly Syntax	Description	\# of word s	\# of cycles	Status Flags Affected
34	EXCH	EXCH	Wns, Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws, Wnd	Find Bit Change from Left (MSb) Side	1	1	C
36	FF1L	FF1L	Ws, Wnd	Find First One from Left (MSb) Side	1	1	C
37	FF1R	FF1R	Ws, Wnd	Find First One from Right (LSb) Side	1	1	C
38	GOTO	GOTO	Expr	Go to address	2	2	None
		Gото	Wn	Go to indirect	1	2	None
39	INC	INC	f	$f=\mathrm{f}+1$	1	1	C,DC,N,OV,Z
		INC	f, WREG	WREG = $\mathrm{f}+1$	1	1	C,DC,N,OV,Z
		INC	Ws,wd	$\mathrm{Wd}=\mathrm{Ws}+1$	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	$f=\mathrm{f}+2$	1	1	C,DC,N,OV,Z
		INC2	£, WREG	WREG = $\mathrm{f}+2$	1	1	C,DC,N,OV,Z
		INC2	Ws,wd	$\mathrm{Wd}=\mathrm{Ws}+2$	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	$f=f$. IOR. WREG	1	1	N, Z
		IOR	£, WREG	WREG = f.IOR. WREG	1	1	N, Z
		IOR	\#lit10,Wn	$\mathrm{Wd}=$ lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb, Ws,wd	$\mathrm{Wd}=\mathrm{Wb}$.IOR. Ws	1	1	N,Z
		IOR	Wb,\#lit5,Wd	$\mathrm{Wd}=\mathrm{Wb}$.IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,\#Slit4, Acc	Load Accumulator	1	1	$\begin{array}{\|l} \hline \mathrm{OA}, \mathrm{OB}, \mathrm{OAB}, \\ \text { SA,SB,SAB } \\ \hline \end{array}$
43	LNK	LNK	\#lit14	Link frame pointer	1	1	None
44	LSR	LSR	f	$\mathrm{f}=$ Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f, WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb, Wns, Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,\#lit5,Wnd	Whd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn, Acc, Wx, Wxd, Wy, Wyd, AWB	Multiply and Accumulate	1	1	$\begin{aligned} & \text { OA,OB,OAB, } \\ & \text { SA,SB,SAB } \\ & \hline \end{aligned}$
		MAC	Wm*Wm, Acc , Wx, Wxd , Wy , wyd	Square and Accumulate	1	1	$\begin{array}{\|l} \hline \mathrm{OA}, \mathrm{OB}, \mathrm{OAB}, \\ \mathrm{SA}, \mathrm{SB}, \mathrm{SAB} \\ \hline \end{array}$
46	MOV	MOV	f, Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N, Z
		Mov	f,WREG	Move f to WREG	1	1	N,Z
		MOV	\#lit16, Wn	Move 16-bit literal to Wn	1	1	None
		MOV. ${ }^{\text {b }}$	\#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn, f	Move Wn to f	1	1	None
		Mov	Wso, wdo	Move Ws to Wd	1	1	None
		Mov	WREG, f	Move WREG to f	1	1	N,Z
		MOV.D	Wns, wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
		MOV.D	Ws, Wnd	Move Double from Ws to W(nd 1): W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy , Wyd, AwB	Prefetch and store accumulator	1	1	None
48	MPY	MPY	Wm*Wn, Acc , Wx, Wxd , Wy , Wyd	Multiply Wm by Wn to Accumulator	1	1	$\begin{aligned} & \text { OA,OB,OAB, } \\ & \text { SA,SB,SAB } \end{aligned}$
		MPY	Wm*Wm, Acc , Wx, Wxd , Wy , Wyd	Square Wm to Accumulator	1	1	$\begin{array}{\|l\|} \hline \mathrm{OA}, \mathrm{OB}, \mathrm{OAB}, \\ \text { SA,SB,SAB } \\ \hline \end{array}$
49	MPY.N	MPY.N	Wm*Wn, Acc, Wx, Wxd, Wy , Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB	Multiply and Subtract from Accumulator	1	1	$\begin{array}{\|l\|} \hline \mathrm{OA}, \mathrm{OB}, \mathrm{OAB}, \\ \text { SA,SB,SAB } \\ \hline \end{array}$
51	MUL	MUL.SS	Wb, Ws, Wnd	$\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\operatorname{signed}(\mathrm{Wb}) * \operatorname{signed}(\mathrm{Ws})$	1	1	None
		MUL. SU	Wb, Ws, Wnd	$\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\operatorname{signed}(\mathrm{Wb})$ * unsigned(Ws)	1	1	None
		MUL.US	Wb, Ws, Wnd	```{Wnd + 1,Wnd} = unsigned(Wb) * signed(Ws)```	1	1	None
		MUL.UU	Wb, Ws, Wnd	$\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=$ unsigned $(\mathrm{Wb})^{*}$ unsigned(Ws)	1	1	None
		MUL. SU	Wb,\#lit5,Wnd	$\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=\operatorname{signed}(\mathrm{Wb})$ * unsigned(lit5)	1	1	None
		MUL.UU	Wb,\#lit5, Wnd	$\{\mathrm{Wnd}+1, \mathrm{Wnd}\}=$ unsigned (Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr \#	Assembly Mnemonic		Assembly Syntax	Description	\# of word s	\# of cycles	Status Flags Affected
52	NEG	NEG	Acc	Negate Accumulator	1	1	$\begin{aligned} & \mathrm{OA}, \mathrm{OB}, \mathrm{OAB}, \\ & \mathrm{SA}, \mathrm{SB}, \mathrm{SAB} \end{aligned}$
		NEG	f	$\mathrm{f}=\overline{\mathrm{f}}+1$	1	1	C,DC,N,OV,Z
		NEG	f, WREG	WREG $=\overline{\mathrm{f}}+1$	1	1	C,DC,N,OV,Z
		NEG	Ws,wd	$\mathrm{Wd}=\overline{\mathrm{Ws}}+1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd $+1)$ +1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	\#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REpeAt	\#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETfie	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	\#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	$\mathrm{f}=$ Rotate Left through Carry f	1	1	C,N,Z
		RLC	f, WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	$\mathrm{f}=$ Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f, WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f	$\mathrm{f}=$ Rotate Right through Carry f	1	1	C,N,Z
		RRC	f, WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
66	RRNC	RRNC	f	$\mathrm{f}=$ Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f, WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,\#Slit4, Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,\#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws, Wnd	Wnd = sign extended Ws	1	1	C,N,Z
69	SETM	SETM	f	$\mathrm{f}=0 \times \mathrm{FFFF}$	1	1	None
		SETM	WREG	WREG $=0 \times$ FFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc, Wn	Arithmetic Shift Accumulator by (Wn)	1	1	$\begin{array}{\|l} \hline \mathrm{OA}, \mathrm{OB}, \mathrm{OAB}, \\ \mathrm{SA}, \mathrm{SB}, \mathrm{SAB} \\ \hline \end{array}$
		SFTAC	Acc,\#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	$\begin{array}{\|l\|} \hline \mathrm{OA}, \mathrm{OB}, \mathrm{OAB}, \\ \text { SA,SB,SAB } \\ \hline \end{array}$
71	SL	SL	f	$\mathrm{f}=$ Left Shift f	1	1	C,N,OV,Z
		SL	f, WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns, Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,\#lit5, Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z

dsPIC30F2010

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr \#	Assembly Mnemonic		Assembly Syntax	Description	\# of word s	\# of cycles	Status Flags Affected
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	$f=f-$ WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f - WREG	1	1	C,DC,N,OV,Z
		SUB	\#lit10,Wn	$\mathrm{W} n=\mathrm{Wn}$ - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,ws,Wd	$\mathrm{Wd}=\mathrm{Wb}-\mathrm{Ws}$	1	1	C,DC,N,OV,Z
		SUB	Wb,\#lit5,Wd	$\mathrm{Wd}=\mathrm{Wb}-\mathrm{lit} 5$	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f=f-$ WREG - ($\overline{\mathrm{C}})$	1	1	C,DC,N,OV,Z
		SUBB	f, WREG	WREG $=\mathrm{f}-$ WREG - ($\overline{\mathrm{C}})$	1	1	C,DC,N,OV,Z
		SUBB	\#lit10, Wn	Wn = Wn - lit10-($\overline{\mathrm{C}})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,wd	$\mathrm{Wd}=\mathrm{Wb}-\mathrm{Ws}-(\overline{\mathrm{C}})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,\#lit5,Wd	$\mathrm{Wd}=\mathrm{Wb}-\mathrm{lit5}-(\overline{\mathrm{C}})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	$\mathrm{f}=$ WREG - f	1	1	C,DC,N,OV,Z
		SUBR	f, WREG	WREG = WREG - f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,wd	$\mathrm{Wd}=\mathrm{Ws}-\mathrm{Wb}$	1	1	C,DC,N,OV,Z
		SUBR	Wb,\#lit5,Wd	$\mathrm{Wd}=$ lit5 - Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$\mathrm{f}=$ WREG $-\mathrm{f}-(\overline{\mathrm{C}})$	1	1	C,DC,N,OV,Z
		SUBBR	f, WREG	WREG = WREG - f - ($\overline{\mathrm{C}})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb, Ws, Wd	$\mathrm{Wd}=\mathrm{Ws}-\mathrm{Wb}-(\overline{\mathrm{C}})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,\#lit5,wd	$\mathrm{Wd}=\mathrm{lit5}-\mathrm{Wb}-(\overline{\mathrm{C}})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	$\mathrm{W} \mathrm{n}=$ nibble swap Wn	1	1	None
		SWAP	Wn	$\mathrm{Wn}=$ byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws, wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws, wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink frame pointer	1	1	None
82	XOR	XOR	f	$f=f . X O R$. WREG	1	1	N,Z
		XOR	f, WREG	WREG = f.XOR. WREG	1	1	N, Z
		XOR	\#lit10,Wn	$\mathrm{Wd}=$ lit10.XOR. Wd	1	1	N,Z
		XOR	Wb,ws,Wd	Wd = Wb . XOR. Ws	1	1	N,Z
		XOR	Wb,\#lit5,Wd	Wd = Wb . XOR. lit5	1	1	N, Z
83	ZE	zE	Ws, Wnd	Whd = Zero-Extend Ws	1	1	C,Z,N

dsPIC30F2010

21.0 DEVELOPMENT SUPPORT

The PIC^{\circledR} microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
- MPLAB ${ }^{\circledR}$ IDE Software
- Assemblers/Compilers/Linkers
- MPASM ${ }^{\text {™ }}$ Assembler
- MPLAB C18 and MPLAB C30 C Compilers
- MPLINKTM Object Linker/ MPLIB ${ }^{\text {TM }}$ Object Librarian
- MPLAB ASM30 Assembler/Linker/Library
- Simulators
- MPLAB SIM Software Simulator
- Emulators
- MPLAB ICE 2000 In-Circuit Emulator
- MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
- PICSTART ${ }^{\circledR}$ Plus Development Programmer
- MPLAB PM3 Device Programmer
- PICkit ${ }^{\text {TM }} 2$ Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

21.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the $8 / 16$-bit microcontroller market. The MPLAB IDE is a Windows ${ }^{\circledR}$ operating system-based application that contains:

- A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- Emulator (sold separately)
- In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
- Source files (assembly or C)
- Mixed assembly and C
- Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

dsPIC30F2010

21.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel ${ }^{\circledR}$ standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

21.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 family of microcontrollers and the dsPIC30, dsPIC33 and PIC24 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

21.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.
The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

21.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

21.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC ${ }^{\circledR}$ DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

dsPIC30F2010

21.7 MPLAB ICE 2000
 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.
The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.
The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 32-bit operating system were chosen to best make these features available in a simple, unified application.

21.8 MPLAB ICE 4000
 High-Performance In-Circuit Emulator

The MPLAB ICE 4000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for high-end PIC MCUs and dsPIC DSCs. Software control of the MPLAB ICE 4000 In-Circuit Emulator is provided by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 4000 is a premium emulator system, providing the features of MPLAB ICE 2000, but with increased emulation memory and high-speed performance for dsPIC30F and PIC18XXXX devices. Its advanced emulator features include complex triggering and timing, and up to 2 Mb of emulation memory.
The MPLAB ICE 4000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

21.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

21.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128×64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP ${ }^{\text {M }}$ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

dsPIC30F2010

21.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

21.12 PICkit 2 Development Programmer

The PICkit ${ }^{\text {TM }} 2$ Development Programmer is a low-cost programmer with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI -TECH's PICC ${ }^{\text {M }}$ Lite C compiler, and is designed to help get up to speed quickly using PIC^{\circledR} microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

21.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.
In addition to the PICDEM ${ }^{\text {TM }}$ and dsPICDEM ${ }^{\text {™ }}$ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ ${ }^{\circledR}$ security ICs, CAN, IrDA ${ }^{\circledR}$, PowerSmart ${ }^{\circledR}$ battery management, SEEVAL ${ }^{\circledR}$ evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.
Check the Microchip web page (www.microchip.com) and the latest "Product Selector Guide" (DS00148) for the complete list of demonstration, development and evaluation kits.

dsPIC30F2010

22.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC30F electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.
For detailed information about the dsPIC30F architecture and core, refer to "dsPIC30F Family Reference Manual" (DS70046).
Absolute maximum ratings for the dsPIC30F family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings ${ }^{(\dagger)}$

Ambient temperature under bias... $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage temperature ... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any pin with respect to Vss (except VDD and $\overline{M C L R}$) .. 0.3 V to (VDD +0.3 V)
Voltage on VDD with respect to Vss ... -0.3V to +5.5V
Voltage on MCLR with respect to Vss (Note 1) .. 0 V to +13.25V
Total power dissipation (Note 2) ...1.0W
Maximum current out of Vss pin ... 300 mA
Maximum current into VDD pin .. 250 mA
Input clamp current, IIK (VI < 0 or VI > VDD) ... $\pm 20 \mathrm{~mA}$
Output clamp current, Iok (Vo < 0 or Vo > VDD) .. $\pm 20 \mathrm{~mA}$
Maximum output current sunk by any I/O pin... 25 mA
Maximum output current sourced by any I/O pin ... 25 mA
Maximum current sunk by all ports ... 200 mA
Maximum current sourced by all ports ... 200 mA
Note 1: Voltage spikes below Vss at the $\overline{M C L R} / V P P$ pin, inducing currents greater than 80 mA , may cause latchup. Thus, a series resistor of $50-100 \Omega$ should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.
2: Maximum allowable current is a function of device maximum power dissipation. See Table 22-4.
${ }^{\dagger}$ NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

22.1 DC Characteristics

TABLE 22-1: OPERATING MIPS VS. VOLTAGE

Vdd Range	Temp Range	Max MIPS	
		dsPIC30F2010-30I	dsPIC30F2010-20E
$4.5-5.5 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	30	-
$4.5-5.5 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-	20
$3.0-3.6 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	20	-
$3.0-3.6 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	-	15
$2.5-3.0 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	10	-

dsPIC30F2010

TABLE 22-2: THERMAL OPERATING CONDITIONS

TABLE 22-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Typ	Max	Unit	Notes
Package Thermal Resistance, 28-pin SOIC (SO)	$\theta \mathrm{JA}$	48.3		${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
Package Thermal Resistance, 28-pin QFN	$\theta \mathrm{JA}$	33.7		${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
Package Thermal Resistance, 28-pin SPDIP (SP)	JJA $^{\circ}$	42		${ }^{\circ} \mathrm{C} / \mathrm{W}$	1

Note 1: Junction to ambient thermal resistance, Theta-ja ($\because \mathrm{JA})$ numbers are achieved by package simulations.

TABLE 22-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended				
Param No.	Symbol	Characteristic	Min	Typ ${ }^{(1)}$	Max	Units	Conditions
Operating Voltage ${ }^{(2)}$							
DC10	VDD	Supply Voltage	2.5	-	5.5	V	Industrial temperature
DC11	VDD	Supply Voltage	3.0	-	5.5	V	Extended temperature
DC12	VDR	RAM Data Retention Voltage ${ }^{(3)}$	-	1.5	-	V	
DC16	VPOR	Vdd Start Voltage to ensure internal Power-on Reset signal	-	Vss	-	V	
DC17	SvDD	VdD Rise Rate to ensure internal Power-on Reset signal	0.05			V/ms	$0-5 \mathrm{~V}$ in 0.1 sec $0-3 \mathrm{~V}$ in 60 ms

Note 1: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
2: These parameters are characterized but not tested in manufacturing.
3: This is the limit to which VDD can be lowered without losing RAM data.

dsPIC30F2010

TABLE 22-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 2.5 V to 5.5 V (unless otherwise stated) $\begin{array}{ll}\text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }\end{array}$			
Parameter No.	Typical	Max	Units	Conditions		
Operating Current (IDD) ${ }^{(1)}$						
DC31a	1.6	3	mA	$25^{\circ} \mathrm{C}$	3.3 V	$\begin{gathered} \text { 0.128 MIPS } \\ \text { LPRC (512 kHz) } \end{gathered}$
DC31b	1.6	3	mA	$85^{\circ} \mathrm{C}$		
DC31c	1.6	3	mA	$125^{\circ} \mathrm{C}$		
DC31e	3.9	7	mA	$25^{\circ} \mathrm{C}$	5 V	
DC31f	3.5	7	mA	$85^{\circ} \mathrm{C}$		
DC31g	3.4	7	mA	$125^{\circ} \mathrm{C}$		
DC30a	3	5	mA	$25^{\circ} \mathrm{C}$	3.3 V	$\begin{gathered} (1.8 \mathrm{MIPS}) \\ \text { FRC }(7.37 \mathrm{MHz}) \end{gathered}$
DC30b	3	5	mA	$85^{\circ} \mathrm{C}$		
DC30c	3	5	mA	$125^{\circ} \mathrm{C}$		
DC30e	6	9	mA	$25^{\circ} \mathrm{C}$	5 V	
DC30f	6	9	mA	$85^{\circ} \mathrm{C}$		
DC30g	6	9	mA	$125^{\circ} \mathrm{C}$		
DC23a	9	14	mA	$25^{\circ} \mathrm{C}$	3.3 V	4 MIPS EC mode, 4X PLL
DC23b	10	15	mA	$85^{\circ} \mathrm{C}$		
DC23c	10	15	mA	$125^{\circ} \mathrm{C}$		
DC23e	16	24	mA	$25^{\circ} \mathrm{C}$	5 V	
DC23f	16	24	mA	$85^{\circ} \mathrm{C}$		
DC23g	16	24	mA	$125^{\circ} \mathrm{C}$		
DC24a	21	32	mA	$25^{\circ} \mathrm{C}$	3.3 V	10 MIPS EC mode, 4X PLL
DC24b	21	32	mA	$85^{\circ} \mathrm{C}$		
DC24c	21	32	mA	$125^{\circ} \mathrm{C}$		
DC24e	35	53	mA	$25^{\circ} \mathrm{C}$	5 V	
DC24f	36	53	mA	$85^{\circ} \mathrm{C}$		
DC24g	36	53	mA	$125^{\circ} \mathrm{C}$		
DC27a	39	59	mA	$25^{\circ} \mathrm{C}$	3.3 V	20 MIPS EC mode, 8 X PLL
DC27b	39	59	mA	$85^{\circ} \mathrm{C}$		
DC27d	66	99	mA	$25^{\circ} \mathrm{C}$	5 V	
DC27e	66	99	mA	$85^{\circ} \mathrm{C}$		
DC27f	66	99	mA	$125^{\circ} \mathrm{C}$		
DC29a	95	150	mA	$25^{\circ} \mathrm{C}$	5V	30 MIPS EC mode, 16X PLL
DC29b	94	150	mA	$85^{\circ} \mathrm{C}$		

Note 1: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. $\overline{M C L R}=$ VDD, WDT, FSCM, LVD and BOR are disabled. CPU, SRAM, Program Memory and Data Memory are operational. No peripheral modules are operating.

dsPIC30F2010

TABLE 22-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) $\begin{array}{ll}\text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }\end{array}$			
Parameter No.	Typical	Max	Units	Conditions		
Operating Current (IDD) ${ }^{(1)}$						
DC51a	1.5	3.0	mA	$25^{\circ} \mathrm{C}$	3.3 V	$\begin{gathered} 0.128 \mathrm{MIPS} \\ \text { LPRC (} 512 \mathrm{kHz} \text {) } \end{gathered}$
DC51b	1.5	3.0	mA	$85^{\circ} \mathrm{C}$		
DC51c	1.5	3.0	mA	$125^{\circ} \mathrm{C}$		
DC51e	4.1	7	mA	$25^{\circ} \mathrm{C}$	5 V	
DC51f	3.6	7	mA	$85^{\circ} \mathrm{C}$		
DC51g	3.5	7	mA	$125^{\circ} \mathrm{C}$		
DC50a	3	5	mA	$25^{\circ} \mathrm{C}$	3.3 V	$\begin{gathered} (1.8 \mathrm{MIPS}) \\ \text { FRC }(7.37 \mathrm{MHz}) \end{gathered}$
DC50b	3	5	mA	$85^{\circ} \mathrm{C}$		
DC50c	3	5	mA	$125^{\circ} \mathrm{C}$		
DC50e	7	9	mA	$25^{\circ} \mathrm{C}$	5 V	
DC50f	6	9	mA	$85^{\circ} \mathrm{C}$		
DC50g	6	9	mA	$125^{\circ} \mathrm{C}$		
DC43a	5	9	mA	$25^{\circ} \mathrm{C}$	3.3 V	4 MIPS EC mode, 4X PLL
DC43b	6	9	mA	$85^{\circ} \mathrm{C}$		
DC43c	6	9	mA	$125^{\circ} \mathrm{C}$		
DC43e	10	15	mA	$25^{\circ} \mathrm{C}$	5 V	
DC43f	10	15	mA	$85^{\circ} \mathrm{C}$		
DC43g	10	15	mA	$125^{\circ} \mathrm{C}$		
DC44a	11	18	mA	$25^{\circ} \mathrm{C}$	3.3 V	10 MIPS EC mode, 4X PLL
DC44b	12	18	mA	$85^{\circ} \mathrm{C}$		
DC44c	12	18	mA	$125^{\circ} \mathrm{C}$		
DC44e	20	30	mA	$25^{\circ} \mathrm{C}$	5 V	
DC44f	20	30	mA	$85^{\circ} \mathrm{C}$		
DC44g	20	30	mA	$125^{\circ} \mathrm{C}$		
DC47a	20	30	mA	$25^{\circ} \mathrm{C}$	3.3 V	20 MIPS EC mode, 8X PLL
DC47b	21	30	mA	$85^{\circ} \mathrm{C}$		
DC47d	35	45	mA	$25^{\circ} \mathrm{C}$	5 V	
DC47e	35	45	mA	$85^{\circ} \mathrm{C}$		
DC47f	35	45	mA	$125^{\circ} \mathrm{C}$		
DC49a	49	65	mA	$25^{\circ} \mathrm{C}$	5V	30 MIPS EC mode, 16X PLL
DC49b	50	65	mA	$85^{\circ} \mathrm{C}$		

Note 1: Data in "Typical" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
2: Base IIDLE current is measured with core off, clock on and all modules turned off.

dsPIC30F2010

TABLE 22-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			$\begin{aligned} & \hline \text { Standard Operating Conditions: } \mathbf{2 . 5 \mathrm { V }} \text { to } \mathbf{5 . 5 \mathrm { V }} \\ & \text { (unless otherwise stated) } \\ & \text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & \\ & \\ & \hline-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended } \end{aligned}$			
Parameter No.	Typical	Max	Units	Conditions		
Power Down Current (IPD) ${ }^{(1)}$						
DC60a	0.05	-	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	3.3 V	Base Power Down Current ${ }^{(2)}$
DC60b	3	25	$\mu \mathrm{A}$	$85^{\circ} \mathrm{C}$		
DC60c	20	50	$\mu \mathrm{A}$	$125^{\circ} \mathrm{C}$		
DC60e	0.1	-	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	5 V	
DC60f	6	35	$\mu \mathrm{A}$	$85^{\circ} \mathrm{C}$		
DC60g	40	70	$\mu \mathrm{A}$	$125^{\circ} \mathrm{C}$		
DC61a	30	45	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	3.3 V	Watchdog Timer Current: Δ IWDT $^{(2)}$
DC61b	34	51	$\mu \mathrm{A}$	$85^{\circ} \mathrm{C}$		
DC61c	46	69	$\mu \mathrm{A}$	$125^{\circ} \mathrm{C}$		
DC61e	35	53	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	5 V	
DC61f	39	59	$\mu \mathrm{A}$	$85^{\circ} \mathrm{C}$		
DC61g	40	60	$\mu \mathrm{A}$	$125^{\circ} \mathrm{C}$		
DC62a	4	10	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	3.3 V	Timer $1 \mathrm{w} / 32 \mathrm{kHz}$ Crystal: $\Delta \mathrm{It} / 32^{(2)}$
DC62b	5	10	$\mu \mathrm{A}$	$85^{\circ} \mathrm{C}$		
DC62c	4	10	$\mu \mathrm{A}$	$125^{\circ} \mathrm{C}$		
DC62e	4	15	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	5 V	
DC62f	6	15	$\mu \mathrm{A}$	$85^{\circ} \mathrm{C}$		
DC62g	5	15	$\mu \mathrm{A}$	$125^{\circ} \mathrm{C}$		
DC63a	4	6	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	3.3 V	BOR On: $\triangle 1 \mathrm{BOR}^{(2)}$
DC63b	4	6	$\mu \mathrm{A}$	$85^{\circ} \mathrm{C}$		
DC63c	5	7.5	$\mu \mathrm{A}$	$125^{\circ} \mathrm{C}$		
DC63e	10	15	$\mu \mathrm{A}$	$25^{\circ} \mathrm{C}$	5V	
DC63f	9	15	$\mu \mathrm{A}$	$85^{\circ} \mathrm{C}$		
DC63g	10	15	$\mu \mathrm{A}$	$125^{\circ} \mathrm{C}$		

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. LVD, BOR, WDT, etc. are all switched off.
2: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

dsPIC30F2010

TABLE 22-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CHARACTERISTICS			$\begin{aligned} & \text { Standard Operating Conditions: } \mathbf{2 . 5 \mathrm { V }} \text { to } \mathbf{5 . 5 \mathrm { V }} \\ & \begin{array}{l} \text { (unless otherwise stated) } \\ \text { Operating temperature } \\ -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended } \end{array} \end{aligned}$				
Param No.	Symbol	Characteristic	Min	Typ ${ }^{(1)}$	Max	Units	Conditions
	VIL	Input Low Voltage ${ }^{(2)}$					
DI10		I/O pins: with Schmitt Trigger buffer	Vss	-	0.2 Vdd	V	
D115		$\overline{\mathrm{MCLR}}$	Vss	-	0.2 VDD	V	
D116		OSC1 (in XT, HS and LP modes)	Vss	-	0.2 VDD	V	
D117		OSC1 (in RC mode) ${ }^{(3)}$	Vss	-	0.3 VDD	V	
D118		SDA, SCL	Vss	-	0.3 VDD	V	SM bus disabled
D119		SDA, SCL	Vss	-	0.2 VDD	V	SM bus enabled
	VIH	Input High Voltage ${ }^{(2)}$					
DI20		I/O pins: with Schmitt Trigger buffer	0.8 Vdd	-	VDD	V	
DI25		$\overline{\mathrm{MCLR}}$	0.8 VDD	-	VDD	V	
DI26		OSC1 (in XT, HS and LP modes)	0.7 Vdd	-	VDD	V	
DI27		OSC1 (in RC mode) ${ }^{(3)}$	0.9 Vdd	-	VDD	V	
DI28		SDA, SCL	0.7 Vdd	-	VDD	V	SM bus disabled
DI29		SDA, SCL	0.8 VDd	-	VDD	V	SM bus enabled
	ICNPU	CNxx Pull-up Current ${ }^{(2)}$					
DI30			50	250	400	$\mu \mathrm{A}$	Vdd $=5 \mathrm{~V}, \mathrm{VPIN}=\mathrm{Vss}$
	IIL	Input Leakage Current ${ }^{(2)(4)(5)}$					
DI50		I/O ports	-	0.01	± 1	$\mu \mathrm{A}$	VSS \leq VPIN \leq VDD,
							Pin at high-impedance
DI51		Analog input pins	-	0.50	± 1.3	$\mu \mathrm{A}$	Vss \leq VPIN \leq VdD,
							Pin at high-impedance
DI55		$\overline{\text { MCLR }}$	-	0.05	± 5	$\mu \mathrm{A}$	VSS \leq VPIN \leq VDD
DI56		OSC1	-	0.05	± 7	$\mu \mathrm{A}$	$\text { Vss } \leq \text { VPIN } \leq \text { VDD, XT, HS }$ and LP Osc mode

Note 1: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
2: These parameters are characterized but not tested in manufacturing.
3: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the dsPIC30F device be driven with an external clock while in RC mode.
4: The leakage current on the $\overline{M C L R}$ pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
5: Negative current is defined as current sourced by the pin.

dsPIC30F2010

TABLE 22-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHA	RACTER	TICS	$\begin{array}{\|l} \hline \text { Standard Operating Conditions: } \mathbf{2 . 5 \mathrm { V }} \text { to } \mathbf{5 . 5 \mathrm { V }} \\ \text { (unless otherwise stated) } \\ \begin{array}{ll} \text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended } \end{array} \end{array}$				
Param No.	Symbol	Characteristic	Min	Typ ${ }^{(1)}$	Max	Units	Conditions
DO10	Vol	Output Low Voltage ${ }^{(2)}$ I/O ports OSC2/CLKO (RC or EC Osc mode)	-	-	$\begin{gathered} 0.6 \\ \text { TBD } \\ 0.6 \\ \text { TBD } \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} \mathrm{IOL} & =8.5 \mathrm{~mA}, \mathrm{VDD}=5 \mathrm{~V} \\ \mathrm{IOL} & =2.0 \mathrm{~mA}, \mathrm{VDD}=3 \mathrm{~V} \\ \mathrm{IOL} & =1.6 \mathrm{~mA}, \mathrm{VDD}=5 \mathrm{~V} \\ \mathrm{IOL} & =2.0 \mathrm{~mA}, \mathrm{VDD}=3 \mathrm{~V} \end{aligned}$
DO20	VOH	Output High Voltage ${ }^{(2)}$ I/O ports OSC2/CLKO (RC or EC Osc mode)	$\begin{gathered} \text { VDD }-0.7 \\ \text { TBD } \\ \text { VDD }-0.7 \\ \text { TBD } \end{gathered}$		$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{IOH}=-3.0 \mathrm{~mA}, \mathrm{VDD}=5 \mathrm{~V} \\ & \mathrm{IOH}=-2.0 \mathrm{~mA}, \mathrm{VDD}=3 \mathrm{~V} \\ & \mathrm{IOH}=-1.3 \mathrm{~mA}, \mathrm{VDD}=5 \mathrm{~V} \\ & \mathrm{IOH}=-2.0 \mathrm{~mA}, \mathrm{VDD}=3 \mathrm{~V} \end{aligned}$
DO50	Cosc2 Cıo Св	Capacitive Loading Specs on Output Pins ${ }^{(2)}$ OSC2/SOSC2 pin All I/O pins and OSC2 SCL, SDA		-	15 50 400	pF pF pF	In XTL, XT, HS and LP modes when external clock is used to drive OSC1. RC or EC Osc mode $\ln I^{2} \mathrm{C}$ mode

Note 1: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.
FIGURE 22-1: BROWN-OUT RESET CHARACTERISTICS

dsPIC30F2010

TABLE 22-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended					
Param No.	Symbol	Characteristic		Min	Typ ${ }^{(1)}$	Max	Units	Conditions
BO10	VBor	BOR Voltage ${ }^{(2)}$ on VDD transition high to low	BORV $=11^{(3)}$	-	-	-	V	Not in operating range
			BORV $=10$	2.6	-	2.71	V	
			BORV $=01$	4.1	-	4.4	V	
			BORV $=00$	4.58	-	4.73	V	
BO15	Vbhys			-	5	-	mV	

Note 1: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested
2: These parameters are characterized but not tested in manufacturing.
3: 11 values not in usable operating range.

TABLE 22-11: DC CHARACTERISTICS: PROGRAM AND EEPROM

DC CHA	RACTERI	ISTICS	Standard Operating Conditions: 2.5V to 5.5 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended				
Param No.	Symbol	Characteristic	Min	Typ ${ }^{(1)}$	Max	Units	Conditions
D120	Ed VDRW	Data EEPROM Memory ${ }^{(2)}$ Byte Endurance Vdd for Read/Write	$\begin{aligned} & 100 \mathrm{~K} \\ & \text { VMIN } \end{aligned}$	1M	-	$\begin{gathered} \text { E/W } \\ \text { V } \end{gathered}$	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ Using EECON to read/write VMIN $=$ Minimum operating voltage
D122	Tdew	Erase/Write Cycle Time	-	2	-	ms	
D123	Tretd	Characteristic Retention	40	100	-	Year	Provided no other specifications are violated
D124	IDEW	IDD During Programming	-	10	30	mA	Row Erase
		Program Flash Memory ${ }^{(2)}$					
D130	Ep	Cell Endurance	10K	100K	-	E/W	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$
D131	VPR	Vdd for Read	Vmin	-	5.5	V	VMIN $=$ Minimum operating voltage
D132	Veb	Vdd for Bulk Erase	4.5	-	5.5	V	
D133	VPEW	Vdd for Erase/Write	3.0	-	5.5	V	
D134	Tpew	Erase/Write Cycle Time	-	2	-	ms	
D135	Tretd	Characteristic Retention	40	100	-	Year	Provided no other specifications are violated
D136	Teb	ICSP Block Erase Time	-	4	-	ms	
D137	IPEW	IDD During Programming	-	10	30	mA	Row Erase
D138	IEB	IDD During Programming	-	10	30	mA	Bulk Erase

Note 1: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated.
2: These parameters are characterized but not tested in manufacturing.

dsPIC30F2010

22.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC30F AC characteristics and timing parameters.
TABLE 22-12: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: $\mathbf{2 . 5 V}$ to 5.5 V (unless otherwise stated) AC CHARACTERISTICS Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial Operating voltage VDD range as described in Section 22.1° "DC Charac- teristics".

FIGURE 22-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

FIGURE 22-3: EXTERNAL CLOCK TIMING

dsPIC30F2010

TABLE 22-13: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: $\mathbf{2 . 5 V}$ to $\mathbf{5 . 5 V}$(unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended				
Param No.	Symbol	Characteristic	Min	Typ ${ }^{(1)}$	Max	Units	Conditions
OS10	Fosc	External CLKI Frequency ${ }^{(2)}$ (External clocks allowed only in EC mode)	$\begin{gathered} \hline \hline \text { DC } \\ 4 \\ 4 \\ 4 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 40 \\ & 10 \\ & 10 \\ & 7.5 \end{aligned}$	MHz MHz MHz MHz	EC EC with $4 x$ PLL EC with $8 x$ PLL EC with $16 \times$ PLL
		Oscillator Frequency ${ }^{(2)}$	$\begin{gathered} \text { DC } \\ 0.4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 10 \\ 31 \\ - \end{gathered}$	$\begin{gathered} \text { - } \\ \text { - } \\ - \\ - \\ - \\ - \\ \overline{-} .37 \\ 512 \end{gathered}$	$\begin{gathered} 4 \\ 4 \\ 10 \\ 10 \\ 10 \\ 7.5 \\ 25 \\ 33 \\ \hline- \end{gathered}$	MHz kHz MHz kHz	RC XTL XT XT with $4 x$ PLL XT with $8 \times$ PLL XT with $16 \times$ PLL HS LP FRC internal LPRC internal
OS20	Tosc	Tosc $=1 / \mathrm{Fosc}$	-	-	-	-	See parameter OS10 for Fosc value
OS25	Tcy	Instruction Cycle Time ${ }^{(\mathbf{2})(\mathbf{3)}}$	33	-	DC	ns	See Table 22-16
OS30	TosL, TosH	$\begin{aligned} & \text { External Clock(2) in (OSC1) } \\ & \text { High or Low Time } \\ & \hline \end{aligned}$. $45 \times$ Tosc	-	-	ns	EC
OS31	TosR, TosF	External Clock ${ }^{(2)}$ in (OSC1) Rise or Fall Time	-	-	20	ns	EC
OS40	TckR	CLKO Rise Time ${ }^{(2)(4)}$	-	6	10	ns	
OS41	TckF	CLKO Fall Time ${ }^{(2)(4)}$	-	6	10	ns	

Note 1: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
2: These parameters are characterized but not tested in manufacturing.
3: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min" values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.
4: Measurements are taken in EC or ERC modes. The CLKO signal is measured on the OSC2 pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

dsPIC30F2010

TABLE 22-14: PLL CLOCK TIMING SPECIFICATIONS (Vdd = 2.5 TO 5.5 V)

AC CHARACTERISTICS			Standard Operating Conditions: 2.5 V to 5.5 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended				
Param No.	Symbol	Characteristic ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units	Conditions
OS50	FPLLI	PLL Input Frequency Range ${ }^{(2)}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	- - -	$\begin{gathered} 10 \\ 10 \\ 7.5^{(3)} \\ 10 \\ 10 \\ 7.5^{(3)} \end{gathered}$	MHz MHz MHz MHz MHz MHz	$\begin{aligned} & \text { EC with } 4 \times \text { PLL } \\ & \text { EC with } 8 \times \mathrm{PLL} \\ & \text { EC with } 16 \times \mathrm{PLL} \\ & \text { XT with } 4 \times \mathrm{PLL} \\ & \text { XT with } 8 \times \mathrm{PLL} \\ & \text { XT with } 16 \times \mathrm{PLL} \end{aligned}$
OS51	Fsys	On-Chip PLL Output ${ }^{(2)}$	16	-	120	MHz	EC, XT modes with PLL
OS52	Tloc	PLL Start-up Time (Lock Time)	-	20	50	$\mu \mathrm{s}$	

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: Limited by device operating frequency range.

TABLE 22-15: PLL JITTER

AC CHARACTERISTICS		Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature $\quad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended					
$\begin{aligned} & \text { Param } \\ & \text { No. } \end{aligned}$	Characteristic	Min	Typ ${ }^{(1)}$	Max	Units	Conditions	
OS61	x4 PLL	-	0.251	0.413	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$	VDD $=3.0$ to 3.6 V
		-	0.251	0.413	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$	VDD $=3.0$ to 3.6 V
		-	0.256	0.47	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$	$\mathrm{VDD}=4.5$ to 5.5 V
		-	0.256	0.47	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$	VDD $=4.5$ to 5.5 V
	x8 PLL	-	0.355	0.584	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$	$\mathrm{VDD}=3.0$ to 3.6 V
		-	0.355	0.584	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$	VDD $=3.0$ to 3.6 V
		-	0.362	0.664	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$	$\mathrm{VDD}=4.5$ to 5.5 V
		-	0.362	0.664	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$	$\mathrm{VDD}=4.5$ to 5.5 V
	x16 PLL	-	0.67	0.92	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$	$\mathrm{VDD}=3.0$ to 3.6 V
		-	0.632	0.956	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$	$\mathrm{VDD}=4.5$ to 5.5 V
		-	0.632	0.956	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$	$\mathrm{VDD}=4.5$ to 5.5 V

Note 1: These parameters are characterized but not tested in manufacturing.

dsPIC30F2010

TABLE 22-16: INTERNAL CLOCK TIMING EXAMPLES

Clock Oscillator Mode	$\begin{aligned} & \text { Fosc } \\ & (\mathrm{MHz})^{(1)} \end{aligned}$	Tcy $(\mu \mathrm{sec})^{(2)}$	$\operatorname{MIPS}^{(3)}$ w/o PLL	$\begin{gathered} \text { MIPS }^{(3)} \\ \mathrm{w} \text { PLL } x 4 \end{gathered}$	$\begin{gathered} \text { MIPS }^{(3)} \\ \text { w PLL x8 } \end{gathered}$	$\begin{gathered} \text { MIPS }^{(3)} \\ \mathrm{w} \text { PLL x16 } \end{gathered}$
EC	0.200	20.0	0.05	-	-	-
	4	1.0	1.0	4.0	8.0	16.0
	10	0.4	2.5	10.0	20.0	-
	25	0.16	6.25	-	-	-
XT	4	1.0	1.0	4.0	8.0	16.0
	10	0.4	2.5	10.0	20.0	-

Note 1: Assumption: Oscillator Postscaler is divide by 1.
2: Instruction Execution Cycle Time: TCY = 1 / MIPS.
3: Instruction Execution Frequency: MIPS = (Fosc * PLLx) / 4 (since there are 4 Q clocks per instruction cycle).

TABLE 22-17: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 2.5 V to 5.5 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended					
Param No.	Characteristic	Min	Typ	Max	Units	Conditions	
	Internal FRC Jitter @ FRC Freq. = $7.37 \mathrm{MHz}{ }^{(1)}$						
OS62	FRC	-	± 0.04	± 0.16	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$	$\mathrm{V} D \mathrm{D}=3.0-3.6 \mathrm{~V}$
		-	± 0.07	± 0.23	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$	$\mathrm{VDD}=4.5-5.5 \mathrm{~V}$
	Internal FRC Accuracy @ FRC Freq. = 7.37 MHz ${ }^{(1)}$						
OS63	FRC	-	-	± 1.50	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$	$\mathrm{V} D \mathrm{D}=3.0-5.5 \mathrm{~V}$
	Internal FRC Drift @ FRC Freq. $=7.37 \mathbf{M H z}{ }^{(1)}$						
OS64		-0.7	-	0.5	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$	$\mathrm{V} D \mathrm{D}=3.0-3.6 \mathrm{~V}$
		-0.7	-	0.7	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$	V dD $=3.0-3.6 \mathrm{~V}$
		-0.7	-	0.5	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$	$\mathrm{VDD}=4.5-5.5 \mathrm{~V}$
		-0.7	-	0.7	\%	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$	$\mathrm{VDD}=4.5-5.5 \mathrm{~V}$

Note 1: Frequency calibrated at $7.372 \mathrm{MHz} \pm 2 \%, 25^{\circ} \mathrm{C}$ and 5 V . TUN $<3: 0>$ bits can be used to compensate for temperature drift.
2: Overall FRC variation can be calculated by adding the absolute values of jitter, accuracy and drift percentages.

TABLE 22-18: INTERNAL RC ACCURACY

Note 1: Change of LPRC frequency as VDD changes.

dsPIC30F2010

FIGURE 22-4: CLKO AND I/O TIMING CHARACTERISTICS

Note: Refer to Figure 22-2 for load conditions.
TABLE 22-19: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5 V to 5.5 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended				
Param No.	Symbol	Characteristic ${ }^{(1)(2)(3)}$	Min	Typ ${ }^{(4)}$	Max	Units	Conditions
DO31	TıOR	Port output rise time	-	7	20	ns	-
DO32	TıOF	Port output fall time	-	7	20	ns	-
DI35	Tinp	INTx pin high or low time (output)	20	-	-	ns	-
DI40	TRBP	CNx high or low time (input)	2 Tcy	-	-	-	-

Note 1: These parameters are asynchronous events not related to any internal clock edges
2: Measurements are taken in RC mode and EC mode where CLKO output is $4 \times$ Tosc.
3: These parameters are characterized but not tested in manufacturing.
4: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated.

dsPIC30F2010

FIGURE 22-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

dsPIC30F2010

TABLE 22-20: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{aligned} & \text { Standard Operating Conditions: } \mathbf{2 . 5 \mathrm { V }} \text { to } \mathbf{5 . 5 \mathrm { V }} \\ & \begin{array}{l} \text { (unless otherwise stated) } \\ \text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ \\ -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended } \end{array} \end{aligned}$				
Param No.	Symbol	Characteristic ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units	Conditions
SY10	TmcL	$\overline{\text { MCLR Pulse Width (low) }}$	2	-	-	$\mu \mathrm{s}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SY11	TPWRT	Power-up Timer Period	$\begin{gathered} \hline 3 \\ 12 \\ 50 \end{gathered}$	$\begin{gathered} \hline 4 \\ 16 \\ 64 \end{gathered}$	$\begin{gathered} \hline 6 \\ 22 \\ 90 \end{gathered}$	ms	$\begin{aligned} & \hline-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \text { User programmable } \end{aligned}$
SY12	TPOR	Power On Reset Delay	3	10	30	$\mu \mathrm{s}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SY13	TIOZ	I/O high-impedance from $\overline{\mathrm{MCLR}}$ Low or Watchdog Timer Reset	-	0.8	1.0	$\mu \mathrm{s}$	
SY20	TWDT1 TwDT2	Watchdog Timer Time-out Period (No Prescaler)	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	ms ms	$\begin{aligned} & 3.3 \mathrm{~V},-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & 5.0 \mathrm{~V},-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
SY25	TBOR	Brown-out Reset Pulse Width ${ }^{(3)}$	100	-	-	$\mu \mathrm{s}$	VDD \leq Vbor (D034)
SY30	Tost	Oscillation Start-up Timer Period	-	1024 Tosc	-	-	TosC = OSC1 period
SY35	Tfscm	Fail-Safe Clock Monitor Delay	-	500	900	$\mu \mathrm{s}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated.
3: Refer to Figure 22-1 and Table 22-10 for BOR.

dsPIC30F2010

FIGURE 22-6: BAND GAP START-UP TIME CHARACTERISTICS

Note: Band Gap is enabled when FBORPOR $<7>$ is set.

TABLE 22-21: BAND GAP START-UP TIME REQUIREMENTS

AC CHA	RACTERIS	TICS	$\begin{aligned} & \text { Standard Operating Conditions: } \mathbf{2 . 5 \mathrm { V }} \text { to } \mathbf{5 . 5 \mathrm { V }} \\ & \text { (unless otherwise stated) } \\ & \text { Operating temperature } \quad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & \\ & \qquad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended } \end{aligned}$				
$\begin{aligned} & \text { Param } \\ & \text { No. } \end{aligned}$	Symbol	Characteristic ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units	Conditions
SY40	TBGAP	Band Gap Start-up Time	-	40	65	$\mu \mathrm{s}$	Defined as the time between the instant that the band gap is enabled and the moment that the band gap reference voltage is stable. RCON $<13>$ Status bit

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated.

dsPIC30F2010

FIGURE 22-7: TIMER EXTERNAL CLOCK TIMING CHARACTERISTICS

Note: "x" refers to Timer Type A or Timer Type B.
Refer to Figure 22-2 for load conditions.

TABLE 22-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{aligned} & \text { Standard Operating Conditions: } \mathbf{2 . 5 \mathrm { V }} \text { to } \mathbf{5 . 5 \mathrm { V }} \\ & \text { (unless otherwise stated) } \\ & \text { Operating temperature } \quad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & \\ & \hline-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \text { for Extended } \end{aligned}$				
Param No.	Symbol	Characteristic		Min	Typ	Max	Units	Conditions
TA10	TTXH	TxCK High Time	Synchronous, no prescaler	0.5 TCY + 20	-	-	ns	Must also meet parameter TA15
			Synchronous, with prescaler	10	-	-	ns	
			Asynchronous	10	-	-	ns	
TA11	TTXL	TxCK Low Time	Synchronous, no prescaler	0.5 TCY + 20	-	-	ns	Must also meet parameter TA15
			Synchronous, with prescaler	10	-	-	ns	
			Asynchronous	10	-	-	ns	
TA15	TtxP	TxCK Input Period	Synchronous, no prescaler	TCY + 10	-	-	ns	
			Synchronous, with prescaler	$\begin{gathered} \text { Greater of: } \\ 20 \mathrm{~ns} \text { or } \\ (\mathrm{TCY}+40) / \mathrm{N} \end{gathered}$	-	-	-	$\begin{aligned} & N=\text { prescale } \\ & \text { value } \\ & (1,8,64,256) \end{aligned}$
			Asynchronous	20	-	-	ns	
OS60	Ft1	SOSC1/T1CK oscillator input frequency range (oscillator enabled by setting bit TCS (T1CON, bit 1))		DC	-	50	kHz	
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.5 Tcy		1.5 Tcy	-	

dsPIC30F2010

TABLE 22-23: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) $\begin{array}{ll}\text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }\end{array}$				
Param No.	Symbol	Characteristic		Min	Typ	Max	Units	Conditions
TB10	TtxH	TxCK High Time	Synchronous, no prescaler	0.5 TCY + 20	-	-	ns	Must also meet parameter TB15
			Synchronous, with prescaler	10	-	-	ns	
TB11	TtxL	TxCK Low Time	Synchronous, no prescaler	0.5 TcY + 20	-	-	ns	Must also meet parameter TB15
			Synchronous, with prescaler	10	-	-	ns	
TB15	TtxP	TxCK Input Period	Synchronous, no prescaler Synchronous, with prescaler	TCY + 10	-	-	ns	$\begin{aligned} & \mathrm{N}=\text { prescale } \\ & \text { value } \\ & (1,8,64,256) \end{aligned}$
				$\begin{aligned} & \text { Greater of: } \\ & 20 \text { ns or } \\ & (\mathrm{Tcy}+40) / \mathrm{N} \end{aligned}$				
TB20	TCKEXTMRL	Delay from External Edge to Timer Incre	I TxCK Clock ement	0.5 Tcy		1.5 TCY	-	

TABLE 22-24: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{aligned} & \text { Standard Operating Conditions: } \mathbf{2 . 5 \mathrm { V }} \text { to } \mathbf{5 . 5 \mathrm { V }} \\ & \text { (unless otherwise stated) } \\ & \text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{\circ} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & \\ & \qquad-40^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \text { for Extended } \end{aligned}$				
Param No.	Symbol	Characteristic		Min	Typ	Max	Units	Conditions
TC10	TtxH	TxCK High Time	Synchronous	$0.5 \mathrm{TcY}+20$	-	-	ns	Must also meet parameter TC15
TC11	TtxL	TxCK Low Time	Synchronous	0.5 TcY + 20	-	-	ns	Must also meet parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous, no prescaler	TCY + 10	-	-	ns	$\mathrm{N}=$ prescale value
			Synchronous, with prescaler	Greater of: $\begin{gathered} 20 \mathrm{~ns} \text { or } \\ (\mathrm{TcY}+40) / \mathrm{N} \end{gathered}$				(1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.5 Tcy		1.5 Tcy	-	

dsPIC30F2010

FIGURE 22-8: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 22-25: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{aligned} & \text { Standard Operating Conditions: } \mathbf{2 . 5 V} \text { to } \mathbf{5 . 5 V} \\ & \text { (unless otherwise stated) } \\ & \text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{\circ} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & \\ & \qquad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended } \end{aligned}$				
Param No.	Symbol	Character	istic ${ }^{(1)}$	Min	Typ	Max	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler	TCY + 20		-	ns	Must also meet parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with prescaler	TCY + 20		-	ns	Must also meet parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler	2 * TCY + 40		-	ns	-
TQ20	TCKEXTMRL	Delay from External Edge to Timer Incre	TxCK Clock ment	0.5 Tcy		1.5 Tcy	ns	-

Note 1: These parameters are characterized but not tested in manufacturing.

dsPIC30F2010

FIGURE 22-9: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

Note: Refer to Figure 22-2 for load conditions.

TABLE 22-26: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for Extended				
Param No.	Symbol	Characteristic ${ }^{(1)}$		Min	Max	Units	Conditions
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 TCY + 20	-	ns	
			With Prescaler	10	-	ns	
IC11	TccH	ICx Input High Time	No Prescaler	0.5 TcY + 20	-	ns	
			With Prescaler	10	-	ns	
IC15	TccP	ICx Input Period		$(2 \mathrm{TCY}+40) / \mathrm{N}$	-	ns	$\begin{aligned} & \hline N=\text { prescale } \\ & \text { value }(1,4,16) \\ & \hline \end{aligned}$

Note 1: These parameters are characterized but not tested in manufacturing.
FIGURE 22-10: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

Note: Refer to Figure 22-2 for load conditions.

TABLE 22-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5 V to 5.5 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended				
Param	Symbol	Characteristic ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units	Conditions
OC10	TccF	OCx Output Fall Time	-	-	-	ns	See parameter D032
OC11	TccR	OCx Output Rise Time	-	-	-	ns	See parameter D031

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.

dsPIC30F2010

FIGURE 22-11: OC/PWM MODULE TIMING CHARACTERISTICS

TABLE 22-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{aligned} & \text { Standard Operating Conditions: } \mathbf{2 . 5 \mathrm { V } \text { to } 5 . 5 \mathrm { V }} \\ & \begin{array}{l} \text { (unless otherwise stated) } \\ \text { Operating temperature } \\ \\ \\ \hline-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended } \end{array} \end{aligned}$				
Param No.	Symbol	Characteristic ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units		Conditions
OC15	Tfd	Fault Input to PWM I/O Change	-	-	50	ns	-	
OC20	Tflt	Fault Input Pulse Width	50	-	-	ns	-	

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.

dsPIC30F2010

FIGURE 22-12: MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS

FIGURE 22-13: MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS

Note: Refer to Figure 22-2 for load conditions.

TABLE 22-29: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS

			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq T \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended										
Param No.	Symbol	Characteristic $^{(1)}$							Min	Typ ${ }^{(2)}$	Max	Units	Conditions
MP10	TFPWM	PWM Output Fall Time	-	-	-	ns	See parameter D032						
MP11	TRPWM	PWM Output Rise Time	-	-	-	ns	See parameter D031						
MP20	TFD	Fault Input \downarrow to PWM I/O Change	-	-	50	ns	-						
MP30	TFH	Minimum Pulse Width	50	-	-	ns	-						

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.

dsPIC30F2010

FIGURE 22-14: QEA/QEB INPUT CHARACTERISTICS

TABLE 22-30: QUADRATURE DECODER TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5 V to 5.5 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended			
Param No.	Symbol	Characteristic ${ }^{(1)}$	Typ ${ }^{(2)}$	Max	Units	Conditions
TQ30	TQuL	Quadrature Input Low Time	6 TCY	-	ns	-
TQ31	TquH	Quadrature Input High Time	6 TcY	-	ns	-
TQ35	TQulN	Quadrature Input Period	12 TCY	-	ns	-
TQ36	TQuP	Quadrature Phase Period	3 TcY	-	ns	-
TQ40	TQuFL	Filter Time to Recognize Low, with Digital Filter	3 * N TCY	-	ns	$\begin{aligned} & \mathrm{N}=1,2,4,16,32,64, \\ & 128 \text { and } 256 \text { (Note 2) } \end{aligned}$
TQ41	TQuFH	Filter Time to Recognize High, with Digital Filter	, 3 * ${ }^{*}$ TCY	-	ns	$\begin{aligned} & \mathrm{N}=1,2,4,16,32,64, \\ & 128 \text { and } 256 \text { (Note 2) } \end{aligned}$

Note 1: These parameters are characterized but not tested in manufacturing.
2: $\quad \mathrm{N}=$ Index Channel Digital Filter Clock Divide Select Bits. Refer to Section 16. "Quadrature Encoder Interface (QEI)" in the "dsPIC30F Family Reference Manual" (DS70046).

dsPIC30F2010

FIGURE 22-15: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

TABLE 22-31: QEI INDEX PULSE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{aligned} & \text { Standard Operating Conditions: } \mathbf{2 . 5 \mathrm { V }} \text { to } \mathbf{5 . 5 \mathrm { V }} \\ & \text { (unless otherwise stated) } \\ & \begin{array}{ll} \text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended } \end{array} \end{aligned}$			
Param No.	Symbol	Characteristic ${ }^{(1)}$	Min	Max	Units	Conditions
TQ50	TqIL	Filter Time to Recognize Low, with Digital Filter	3 * N TCY	-	ns	$\begin{aligned} & \mathrm{N}=1,2,4,16,32,64, \\ & 128 \text { and } 256 \text { (Note 2) } \end{aligned}$
TQ51	TqiH	Filter Time to Recognize High, with Digital Filter	3 * * TCY	-	ns	$\begin{aligned} & \mathrm{N}=1,2,4,16,32,64, \\ & 128 \text { and } 256 \text { (Note 2) } \end{aligned}$
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (Ungated Index)	3 TcY	-	ns	-

Note 1: These parameters are characterized but not tested in manufacturing.
2: Alignment of Index Pulses to QEA and QEB is shown for Position Counter reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but Index Pulse recognition occurs on falling edge.

dsPIC30F2010

FIGURE 22-16: SPI MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

Note: Refer to Figure 22-2 for load conditions.

TABLE 22-32: SPI MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{aligned} & \text { Standard Operating Conditions: } \mathbf{2 . 5 \mathrm { V } \text { to } 5 . 5 \mathrm { V }} \\ & \text { (unless otherwise stated) } \\ & \text { Operating temperature } \\ & \qquad \begin{array}{l} -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ \\ \hline-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extendec } \end{array} \end{aligned}$				
Param No.	Symbol	Characteristic ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units	Conditions
SP10	TscL	SCKX Output Low Time ${ }^{(3)}$	TCY/2	-	-	ns	-
SP11	TscH	SCKX Output High Time ${ }^{(3)}$	TCY/2	-	-	ns	-
SP20	TscF	SCKx Output Fall Time ${ }^{(4}$	-	-	-	ns	See parameter D032
SP21	TscR	SCKX Output Rise Time ${ }^{(4)}$	-	-	-	ns	$\begin{gathered} \text { See parameter } \\ \text { D031 } \end{gathered}$
SP30	TdoF	SDOX Data Output Fall Time ${ }^{(4)}$	-	-	-	ns	See parameter D032
SP31	TdoR	SDOx Data Output Rise Time ${ }^{(4)}$	-	-	-	ns	See parameter D031
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	-	30	ns	-
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIX Data Input to SCKx Edge	20	-	-	ns	-
SP41	TscH2diL, TscL2diL	Hold Time of SDIX Data Input to SCKX Edge	20	-	-	ns	-

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCK is 100 ns . Therefore, the clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPI pins.

dsPIC30F2010

FIGURE 22-17: SPI MODULE MASTER MODE (CKE =1) TIMING CHARACTERISTICS

Note: Refer to Figure 22-2 for load conditions.

TABLE 22-33: SPI MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended				
Param No.	Symbol	Characteristic ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units	Conditions
SP10	TscL	SCKX output low time ${ }^{(3)}$	TCY / 2	-	-	ns	-
SP11	TscH	SCKX output high time ${ }^{(3)}$	TCY/2	-	-	ns	-
SP20	TscF	SCKX output fall time ${ }^{(4)}$	-	-	-	ns	See parameter D032
SP21	TscR	SCKx output rise time ${ }^{(4)}$	-	-	-	ns	$\begin{gathered} \text { See parameter } \\ \text { D031 } \end{gathered}$
SP30	TdoF	SDOx data output fall time ${ }^{(4)}$	-	-	-	ns	$\begin{gathered} \text { See parameter } \\ \text { D032 } \end{gathered}$
SP31	TdoR	SDOx data output rise time ${ }^{(4)}$	-	-	-	ns	See parameter D031
SP35	TscH2doV, TscL2doV	SDOx data output valid after SCKx edge	-	-	30	ns	-
SP36	TdoV2sc, TdoV2scL	SDOx data output setup to first SCKx edge	30	-	-	ns	-
SP40	TdiV2scH, TdiV2scL	Setup time of SDIx data input to SCKx edge	20	-	-	ns	-
SP41	TscH2diL, TscL2diL	Hold time of SDIx data input to SCKx edge	20	-	-	ns	-

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPI pins.

FIGURE 22-18: SPI MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 22-34: SPI MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended				
Param No.	Symbol	Characteristic ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units	Conditions
SP70	TscL	SCKX Input Low Time	30	-	-	ns	-
SP71	TscH	SCKx Input High Time	30	-	-	ns	-
SP72	TscF	SCKX Input Fall Time ${ }^{(3)}$	-	10	25	ns	-
SP73	TscR	SCKx Input Rise Time ${ }^{(3)}$	-	10	25	ns	-
SP30	TdoF	SDOx Data Output Fall Time ${ }^{(3)}$	-	-	-	ns	See parameter D032
SP31	TdoR	SDOx Data Output Rise Time ${ }^{(3)}$	-	-	-	ns	See parameter D031
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	-	30	ns	-
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	-	-	ns	-
SP41	TscH2diL, TscL2diL	Hold Time of SDIX Data Input to SCKx Edge	20	-	-	ns	-
SP50	TssL2scH, TssL2scL	$\overline{\text { SS }} \times \downarrow$ to SCKx \uparrow or SCKx \downarrow Input	120	-	-	ns	-
SP51	TssH2doZ	$\overline{\mathrm{SS}} \times \uparrow$ to SDOx Output High-Impedance ${ }^{(3)}$	10	-	50	ns	-
SP52	TscH2ssH TscL2ssH	$\overline{\text { SS }} \mathrm{x}$ after SCK Edge	1.5 TCY +40	-	-	ns	-

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: Assumes 50 pF load on all SPI pins.

dsPIC30F2010

FIGURE 22-19: SPI MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

dsPIC30F2010

TABLE 22-35: SPI MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5 V to 5.5 V (unless otherwise stated) $\begin{array}{lll}\text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }\end{array}$				
Param No.	Symbol	Characteristic ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units	Conditions
SP70	TscL	SCKx Input Low Time	30	-	-	ns	-
SP71	TscH	SCKx Input High Time	30	-	-	ns	-
SP72	TscF	SCKx Input Fall Time ${ }^{(3)}$	-	10	25	ns	-
SP73	TscR	SCKx Input Rise Time ${ }^{(3)}$	-	10	25	ns	-
SP30	TdoF	SDOx Data Output Fall Time ${ }^{(3)}$	-	-	-	ns	$\begin{gathered} \text { See parameter } \\ \text { D032 } \end{gathered}$
SP31	TdoR	SDOx Data Output Rise Time ${ }^{(3)}$	-	-	-	ns	See parameter D031
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	-	30	ns	-
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	-	-	ns	-
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	-	-	ns	-
SP50	TssL2scH, TssL2scL	$\overline{\text { SS }} \times \downarrow$ to SCKx \downarrow or SCKx个 input	120	-	-	ns	-
SP51	TssH2doZ	$\overline{\mathrm{SS}} \uparrow$ to SDOx Output High-Impedance ${ }^{(4)}$	10	-	50	ns	-
SP52	TscH2ssH TscL2ssH	$\overline{\text { SS }} \times \uparrow$ after SCKx Edge	1.5 TcY + 40	-	-	ns	-
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	-	-	50	ns	-

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCK is 100 ns . Therefore, the clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPI pins.

dsPIC30F2010

FIGURE 22-20: $\quad I^{2} C^{T M}$ BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

Note: Refer to Figure 22-2 for load conditions.
FIGURE 22-21: $\quad I^{2} C^{T M}$ BUS DATA TIMING CHARACTERISTICS (MASTER MODE)

Note: Refer to Figure 22-2 for load conditions.

dsPIC30F2010

TABLE 22-36: $I^{2} \mathrm{C}^{\text {TM }}$ BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 2.5 V to 5.5 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended			
$\begin{aligned} & \text { Param } \\ & \text { No. } \end{aligned}$	Symbol	Characteristic		Min ${ }^{(1)}$	Max	Units	Conditions
IM10	Tlo:SCL	Clock Low Time	100 kHz mode	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	-
			400 kHz mode	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	-
			$1 \mathrm{MHz} \mathrm{mode}{ }^{(2)}$	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	-
IM11	THI:SCL	Clock High Time	100 kHz mode	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	-
			400 kHz mode	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	-
			1 MHz mode ${ }^{(2)}$	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	-
IM20	TF:SCL	SDA and SCL Fall Time	100 kHz mode	-	300	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	$20+0.1 \mathrm{CB}$	300	ns	
			$1 \mathrm{MHz} \mathrm{mode}{ }^{(2)}$	-	100	ns	
IM21	TR:SCL	SDA and SCL Rise Time	100 kHz mode	-	1000	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	$20+0.1$ CB	300	ns	
			1 MHz mode ${ }^{(2)}$	-	300	ns	
IM25	Tsu:DAT	Data Input Setup Time	100 kHz mode	250	-	ns	-
			400 kHz mode	100	-	ns	
			1 MHz mode ${ }^{(2)}$	TBD	-	ns	
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	-	ns	-
			400 kHz mode	0	0.9	$\mu \mathrm{s}$	
			1 MHz mode ${ }^{(2)}$	TBD	-	ns	
IM30	Tsu:Sta	Start Condition Setup Time	100 kHz mode	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	Only relevant for repeated Start condition
			400 kHz mode	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	
			1 MHz mode ${ }^{(2)}$	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	After this period the first clock pulse is generated
			400 kHz mode	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	
			1 MHz mode ${ }^{(2)}$	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	
IM33	Tsu:Sto	Stop Condition Setup Time	100 kHz mode	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	-
			400 kHz mode	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	
			1 MHz mode ${ }^{(2)}$	TCY / 2 (BRG + 1)	-	$\mu \mathrm{s}$	
IM34	THD:STO	Stop Condition Hold Time	100 kHz mode	TCY / 2 (BRG + 1)	-	ns	-
			400 kHz mode	TCY / 2 (BRG + 1)	-	ns	
			1 MHz mode ${ }^{(2)}$	TCY / 2 (BRG + 1)	-	ns	
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode	-	3500	ns	-
			400 kHz mode	-	1000	ns	-
			$1 \mathrm{MHz} \mathrm{mode}{ }^{(2)}$	-	-	ns	-
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	-	$\mu \mathrm{s}$	Time the bus must be free before a new transmission can start
			400 kHz mode	1.3	-	$\mu \mathrm{s}$	
			1 MHz mode ${ }^{(2)}$	TBD	-	$\mu \mathrm{s}$	
IM50	Св	Bus Capacitive Loading		-	400	pF	

Note 1: $\quad \mathrm{BRG}$ is the value of the $\mathrm{I}^{2} \mathrm{C}^{\text {TM }}$ Baud Rate Generator. Refer to Section 21 "Inter-Integrated Circuit ${ }^{\text {TM }}$ $\left(I^{2} \mathrm{C}\right)$ " in the "dsPIC30F Family Reference Manual" (DS70046).
2: Maximum pin capacitance $=10 \mathrm{pF}$ for all $\mathrm{I}^{2} \mathrm{C}$ pins (for 1 MHz mode only).

dsPIC30F2010

FIGURE 22-22: $\quad I^{2} C^{\text {TM }}$ BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

FIGURE 22-23: $\quad I^{2} C^{\text {TM }}$ BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)

dsPIC30F2010

TABLE 22-37: $I^{2} C^{\text {™ }}$ BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS			$\begin{aligned} & \text { Standard Operating Conditions: } \mathbf{2 . 5 \mathrm { V }} \text { to } \mathbf{5 . 5 \mathrm { V }} \\ & \text { (unless otherwise stated) } \\ & \text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ & \\ & \qquad-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \text { for Extended } \end{aligned}$				
Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
IS10	Tlo:SCL	Clock Low Time	100 kHz mode	4.7	-	$\mu \mathrm{S}$	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	-	$\mu \mathrm{s}$	Device must operate at a minimum of 10 MHz .
			1 MHz mode ${ }^{(1)}$	0.5	-	$\mu \mathrm{s}$	-
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	-	$\mu \mathrm{s}$	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	-	$\mu \mathrm{s}$	Device must operate at a minimum of 10 MHz
			$1 \mathrm{MHz} \mathrm{mode}{ }^{(1)}$	0.5	-	$\mu \mathrm{s}$	-
IS20	TF:SCL	SDA and SCL Fall Time	100 kHz mode	-	300	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	$20+0.1$ CB	300	ns	
			1 MHz mode ${ }^{(1)}$	-	100	ns	
IS21	TR:SCL	$\begin{aligned} & \text { SDA and SCL } \\ & \text { Rise Time } \end{aligned}$	100 kHz mode	-	1000	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	$20+0.1 \mathrm{CB}$	300	ns	
			1 MHz mode ${ }^{(1)}$	-	300	ns	
IS25	Tsu:DAT	Data Input Setup Time	100 kHz mode	250	-	ns	-
			400 kHz mode	100	-	ns	
			$1 \mathrm{MHz} \mathrm{mode}{ }^{(1)}$	100	-	ns	
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0	-	ns	-
			400 kHz mode	0	0.9	$\mu \mathrm{s}$	
			1 MHz mode ${ }^{(1)}$	0	0.3	$\mu \mathrm{s}$	
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	-	$\mu \mathrm{s}$	Only relevant for repeated Start condition
			400 kHz mode	0.6	-	$\mu \mathrm{s}$	
			1 MHz mode ${ }^{(1)}$	0.25	-	$\mu \mathrm{s}$	
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	-	$\mu \mathrm{s}$	After this period the first clock pulse is generated
			400 kHz mode	0.6	-	$\mu \mathrm{s}$	
			1 MHz mode ${ }^{(1)}$	0.25	-	$\mu \mathrm{s}$	
IS33	Tsu:STO	Stop Condition Setup Time	100 kHz mode	4.7	-	$\mu \mathrm{s}$	-
			400 kHz mode	0.6	-	$\mu \mathrm{s}$	
			$1 \mathrm{MHz} \mathrm{mode}{ }^{(1)}$	0.6	-	$\mu \mathrm{s}$	
IS34	THD:STO	Stop Condition Hold Time	100 kHz mode	4000	-	ns	-
			400 kHz mode	600	-	ns	
			1 MHz mode ${ }^{(1)}$	250		ns	
IS40	TAA:SCL	Output Valid From Clock	100 kHz mode	0	3500	ns	-
			400 kHz mode	0	1000	ns	
			1 MHz mode ${ }^{(1)}$	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	-	$\mu \mathrm{s}$	Time the bus must be free before a new transmission can start
			400 kHz mode	1.3	-	$\mu \mathrm{s}$	
			1 MHz mode ${ }^{(1)}$	0.5	-	$\mu \mathrm{S}$	
IS50	CB	Bus Capacitive Loading		-	400	pF	-

Note 1: Maximum pin capacitance $=10 \mathrm{pF}$ for all $\mathrm{I}^{2} \mathrm{C}^{\top \mathrm{TM}}$ pins (for 1 MHz mode only).

dsPIC30F2010

TABLE 22-38: 10-BIT HIGH-SPEED A/D MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: (unless otherwise stated) Operating temperature $\quad-40^{\circ} \mathrm{C} \leq \mathrm{VA}$ $-40^{\circ} \mathrm{C} \leq+85^{\circ} \mathrm{CA}$ for Industrial 				
$\begin{aligned} & \text { Param } \\ & \text { No. } \end{aligned}$	Symbol	Characteristic	Min.	Typ	Max.	Units	Conditions
Device Supply							
AD01	AVDD	Module VDD Supply	Greater of Vdd - 0.3 or 2.7		Lesser of VDD +0.3 or 5.5	V	-
AD02	AVss	Module Vss Supply	Vss - 0.3		Vss + 0.3	V	-
Reference Inputs							
AD05	VREFH	Reference Voltage High	AVss+2.7		AVDD	V	-
AD06	Vrefl	Reference Voltage Low	AVss		AVDD - 2.7	V	-
AD07	Vref	Absolute Reference Voltage	AVss - 0.3		AVDD + 0.3	V	-
AD08	IREF	Current Drain	-	$\begin{aligned} & .200 \\ & .001 \end{aligned}$	$\begin{gathered} 300 \\ 3 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	A/D operating A/D off
Analog Input							
AD10	VINH-VINL	Full-Scale Input Span	Vreft		Vreft	V	-
AD11	VIN	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V	-
AD12	-	Leakage Current	-	± 0.001	± 0.244	$\mu \mathrm{A}$	$\begin{aligned} & \text { VINL }=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\ & \text { AVDD }=\mathrm{VREFH}=5 \mathrm{~V} \\ & \text { Source Impedance }=5 \mathrm{k} \Omega \\ & \hline \end{aligned}$
AD13	-	Leakage Current	-	± 0.001	± 0.244	$\mu \mathrm{A}$	$\begin{aligned} & \text { VINL }=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\ & \text { AVDD }=\mathrm{VREFH}=3 \mathrm{~V} \\ & \text { Source Impedance }=5 \mathrm{k} \Omega \end{aligned}$
AD17	RIN	Recommended Impedance Of Analog Voltage Source	-		5K	Ω	-
DC Accuracy							
AD20	Nr	Resolution		0 data bis		bits	-
	INL	Integral Nonlinearity ${ }^{(3)}$ Integral Nonlinearity ${ }^{(3)}$	$\begin{aligned} & - \\ & - \end{aligned}$	± 1 ± 1	± 1 ± 1	LSb LSb	$\begin{aligned} & \text { VINL }=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\ & \mathrm{AVDD}=\mathrm{VREFH}=5 \mathrm{~V} \\ & \mathrm{VINL}=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\ & \text { AVDD }=\text { VREFH }=3 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { AD22 } \\ & \text { AD22A } \end{aligned}$	DNL DNL	Differential Nonlinearity ${ }^{(3)}$ Differential Nonlinearity ${ }^{(3)}$	- -	± 1 ± 1	± 1 ± 1	LSb LSb	$\begin{aligned} & \text { VINL }=A V S S=\text { VREFL }=0 \mathrm{~V}, \\ & \text { AVDD }=\text { VREFH }=5 \mathrm{~V} \\ & \text { VINL }=A V S S=\text { VREFL }=0 \mathrm{~V}, \\ & \text { AVDD }=\text { VREFH }=3 \mathrm{~V} \end{aligned}$
AD23 AD23A	Gerr Gerr	Gain Error ${ }^{(3)}$ Gain Error ${ }^{(3)}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	± 5 ± 5	± 6 ± 6	LSb LSb	$\begin{aligned} & \text { VINL }=A V S S=\text { VREFL }=0 \mathrm{~V}, \\ & \text { AVDD }=\text { VREFH }=5 \mathrm{~V} \\ & \text { VINL }=A V S S=\text { VREFL }=0 \mathrm{~V}, \\ & \text { AVDD }=\text { VREFH }=3 \mathrm{~V} \end{aligned}$

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.
2: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.
3: Measurements were taken with external VREF+ and VREF- used as the ADC voltage references.

dsPIC30F2010

TABLE 22-38: 10-BIT HIGH-SPEED A/D MODULE SPECIFICATIONS (CONTINUED)

AC CHARACTERISTICS			Standard Operating Conditions: 2.7V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended				
Param No.	Symbol	Characteristic	Min.	Typ	Max.	Units	Conditions
AD24	EofF	Offset Error	± 1	± 2	± 3	LSb	$\begin{aligned} & \text { VINL }=\text { AVSS }=\text { VREFL }=0 \mathrm{~V}, \\ & \text { AVDD }=\text { VREFH }=5 \mathrm{~V} \end{aligned}$
AD24A	Eoff	Offset Error	± 1	± 2	± 3	LSb	$\begin{aligned} & \mathrm{VINL}=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\ & \mathrm{AVDD}=\mathrm{VREFH}=3 \mathrm{~V} \end{aligned}$
AD25	-	Monotonicity ${ }^{(2)}$	-	-	-	-	Guaranteed
Dynamic Performance							
AD30	THD	Total Harmonic Distortion	-	-64	-67	dB	-
AD31	SINAD	Signal to Noise and Distortion	-	57	58	dB	-
AD32	SFDR	Spurious Free Dynamic Range	-	67	71	dB	-
AD33	FNYQ	Input Signal Bandwidth	-	-	500	kHz	-
AD34	ENOB	Effective Number of Bits	9.29	9.41	-	bits	-

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.
2: The A / D conversion result never decreases with an increase in the input voltage, and has no missing codes.
3: Measurements were taken with external VREF+ and VREF- used as the ADC voltage references.

dsPIC30F2010

FIGURE 22-24: 10-BIT HIGH-SPEED A/D CONVERSION TIMING CHARACTERISTICS (CHPS $=01$, SIMSAM $=0$, ASAM $=0, S S R C=000$)

(1) - Software sets ADCON. SAMP to start sampling.
(2) - Sampling starts after discharge period TsAMP is described in Section 18.7.
(3) - Software clears ADCON. SAMP to start conversion.
(4) - Sampling ends, conversion sequence starts.
(5) - Convert bit 9 .
(6) - Convert bit 8 .
(7) - Convert bit 0 .
(8) - One TAD for end of conversion.

dsPIC30F2010

FIGURE 22-25: 10-BIT HIGH-SPEED A/D CONVERSION TIMING CHARACTERISTICS $(C H P S=01, S I M S A M=0, A S A M=1, S S R C=111, S A M C=00001)$

dsPIC30F2010

TABLE 22-39: 10-BIT HIGH-SPEED A/D CONVERSION TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.7V to 5.5 V (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for Extended				
Param No.	Symbol	Characteristic	Min.	Typ	Max.	Units	Conditions
Clock Parameters							
AD50	TAD	A/D Clock Period	-	84	-	ns	See Table 18-1 ${ }^{(1)}$
AD51	tRC	A/D Internal RC Oscillator Period	700	900	1100	ns	-
Conversion Rate							
AD55	tCONV	Conversion Time	-	12 TAD	-	-	-
AD56	Fcnv	Throughput Rate	-	1.0	-	Msps	See Table 18-1 ${ }^{(1)}$
AD57	TSAMP	Sample Time	-	1 TAD	-	-	See Table 18-1 ${ }^{(1)}$
Timing Parameters							
AD60	tPCS	Conversion Start from Sample Trigger	-	1.0 TAD	-	ns	-
AD61	tPSS	Sample Start from Setting Sample (SAMP) Bit	0.5 TAD	-	1.5 TAD	ns	-
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1)	-	0.5 TAD	-	ns	-
AD63	tDPU	Time to Stabilize Analog Stage from A/D Off to A/D On	-	20	-	$\mu \mathrm{s}$	-

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

dsPIC30F2010

23.0 PACKAGING INFORMATION

23.1 Package Marking Information

28-Lead QFN-S

28-Lead SPDIP (Skinny DIP)

28-Lead SOIC (.300")

Example

Example

Example

Legend: $X X$...X Customer-specific information
$Y \quad$ Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ' 01 ')
NNN Alphanumeric traceability code
(e3) Pb-free JEDEC designator for Matte Tin (Sn)

* This package is Pb -free. The Pb -free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

dsPIC30F2010

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9 mm Body [QFN-S] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	e	0.65 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A 3	0.20 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E 2	3.65	3.70	4.70
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70
Contact Width	b	0.23	0.38	0.43
Contact Length §	L	0.30	0.40	0.50
Contact-to-Exposed Pad §	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Package is saw singulated
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

dsPIC30F2010

28-Lead Skinny Plastic Dual In-line (SP) - $\mathbf{3 0 0}$ mil Body (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n	28			28		
Pitch	p		. 100			2.54	
Top to Seating Plane	A	. 140	. 150	. 160	3.56	3.81	4.06
Molded Package Thickness	A2	. 125	. 130	. 135	3.18	3.30	3.43
Base to Seating Plane	A1	. 015			0.38		
Shoulder to Shoulder Width	E	. 300	. 310	. 325	7.62	7.87	8.26
Molded Package Width	E1	. 275	. 285	. 295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	. 125	. 130	. 135	3.18	3.30	3.43
Lead Thickness	C	. 008	. 012	. 015	0.20	0.29	0.38
Upper Lead Width	B1	. 040	. 053	. 065	1.02	1.33	1.65
Lower Lead Width	B	. 016	. 019	. 022	0.41	0.48	0.56
Overall Row Spacing §	eB	. 320	. 350	. 430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter
§ Significant Characteristic
Notes:
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010 " $(0.254 \mathrm{~mm})$ per side.
JEDEC Equivalent: MO-095
Drawing No. C04-070

dsPIC30F2010

28-Lead Plastic Small Outline (SO) - Wide, $\mathbf{3 0 0}$ mil Body (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS		
Dime	imits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n	28			28		
Pitch	p		. 050			1.27	
Overall Height	A	. 093	. 099	. 104	2.36	2.50	2.64
Molded Package Thickness	A2	. 088	. 091	. 094	2.24	2.31	2.39
Standoff §	A1	. 004	. 008	. 012	0.10	0.20	0.30
Overall Width	E	. 394	. 407	. 420	10.01	10.34	10.67
Molded Package Width	E1	. 288	. 295	. 299	7.32	7.49	7.59
Overall Length	D	. 695	. 704	. 712	17.65	17.87	18.08
Chamfer Distance	h	. 010	. 020	. 029	0.25	0.50	0.74
Foot Length	L	. 016	. 033	. 050	0.41	0.84	1.27
Foot Angle Top	ϕ	0	4	8	0	4	8
Lead Thickness	c	. 009	. 011	. 013	0.23	0.28	0.33
Lead Width	B	. 014	. 017	. 020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter
§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010 " (0.254 mm) per side.
JEDEC Equivalent: MS-013
Drawing No. C04-052

APPENDIX A: REVISION HISTORY

Revision F (May 2006)

Previous versions of this data sheet contained
Advance or Preliminary Information. They were distributed with incomplete characterization data.
This revision reflects these updates:

- Supported $I^{2} C$ Slave addresses (see Table 16-1)
- 10-bit A/D High-speed Conversion timing requirements (see Section 18.0 "10-bit High-Speed Analog-to-Digital Converter (ADC) Module"
- Operating Current (IDD) specifications (see Table 22-5)
- Idle Current (IIDLE) specifications (see Table 22-6)
- Power-down Current (IPD) specifications (see Table 22-7)
- I/O pin Input specifications (see Table 22-8)
- BOR voltage limits (see Table 22-10)
- PLL Clock Timing specifications (see Table 22-14)
- PLL Jitter specifications (see Table 22-15)
- Internal RC Accuracy specifications (see Table 22-17)
- Watchdog Timer time-out limits (see Table 22-20)
- Additional minor corrections throughout document.

Revision G (December 2006)

This revision includes updates to the packaging diagrams.

dsPIC30F2010

NOTES:

dsPIC30F2010

INDEX
A
A/D 111
1 Msps Configuration Guideline 115
600 ksps Configuration Guideline 116
750 ksps Configuration Guideline 116
Conversion Rate Parameters 114
Conversion Speeds 114
Selecting the Conversion Clock 113
Voltage Reference Schematic 115
AC Characteristics 157
Load Conditions 157
AC Temperature and Voltage Specifications 157
Address Generator Units 31
Alternate 16-bit Timer/Counter 77
Alternate Vector Table 41
Assemble MPASM Assembler 146
Automatic Clock Stretch 98
During 10-bit Addressing (STREN = 1) 98
During 7-bit Addressing (STREN = 1) 98
Receive Mode 98
Transmit Mode 98
B
Band Gap Start-up Time
Requirements 164
Timing Characteristics 16
Barrel Shifter 17
Bit-Reversed Addressing 35
Example 35
Implementation 35
Modifier Values (Table) 36
Sequence Table (16-Entry) 36
Block Diagram PWM 82
Block Diagrams
10-bit High Speed ADC Functional 111
16-bit Timer1 Module 58
DSP Engine 14
dsPIC30F2010 6
External Power-on Reset Circuit. 131
${ }^{2}$ C 96
Input Capture Mode 67
Oscillator System 125
Output Compare Mode 71
Quadrature Encoder Interface 75
Reset System 129
Shared Port Structure 53
SPI 92
SPI Master/Slave Connection 92
UART Receiver 104
UART Transmitter 103
BOR Characteristics 156
BOR. See Brown-out Reset
Brown-out Reset
Characteristics 155
Timing Requirements 163
Brown-out Reset (BOR) 123
C
C Compilers
MPLAB C18 146
MPLAB C30 146
Center-Aligned PWM 85
CLKO and I/O Timing
Characteristics 161
Requirements 161
Code Examples
Data EEPROM Block Erase 50
Data EEPROM Block Write 52
Data EEPROM Read 49
Data EEPROM Word Erase 50
Data EEPROM Word Write 51
Erasing a Row of Program Memory 45
Initiating a Programming Sequence 46
Loading Write Latches 46
Code Protection 23
Complementary PWM Operation 86
Configuring Analog Port Pins 54
Control Registers 44
NVMADR 44
NVMADRU 44
NVMCON 44
NVMKEY 44
Core Architecture
Overview 9
Core Register Map 27
Customer Change Notification Service 199
Customer Notification Service 199
Customer Support. 199
DData Access from Program Memory UsingProgram Space Visibility.22
Data Accumulators and Adder 15, 16, 17
Data Address Space 23
Access RAM 27
Alignment 26
Alignment (Figure) 26
MCU and DSP (MAC Class) Instructions 25
Memory Map. 23, 24
Spaces. 26
Width 26
Data EEPROM Memory. 49
Erasing 50
Erasing, Block 50
Erasing, Word 50
Protection Against Spurious Write 52
Reading 49
Write Verify 52
Writing 51
Writing, Block 52
Writing, Word 51
DC Characteristics 149
BOR 156
Brown-out Reset 155
I/O Pin Input Specifications 153
I/O Pin Output Specifications 155
Idle Current (IIDLE) 152
Operating Current (IDD) 151
Power-Down Current (IPD) 153
Program and EEPROM 156
Temperature and Voltage Specifications 149

dsPIC30F2010

Dead-Time Generators 86
Ranges. 86
Development Support 145
Device Configuration
Register Map. 135
Device Configuration Registers 134
FBORPOR 134
FGS 134
FOSC 134
FWDT 134
Device Overview 5
Divide Support 12
DSP Engine. 13
Multiplier 15
Dual Output Compare Match Mode 72
Continuous Pulse Mode 72
Single Pulse Mode 72

E

Edge-Aligned PWM 85
Electrical Characteristics 149
AC 157
DC.. 149
Equations
A/D Conversion Clock 113
Baud Rate 107
PWM Period 84
PWM Period (Up/Down Count Mode) 84
PWM Resolution 84
Serial Clock Rate 100
Errata 4
Exception Sequence
Trap Sources 39
External Clock Timing Characteristics
Type A and B Timer 165
External Clock Timing Requirements 158
Type A Timer 165
Type B Timer 166
Type C Timer 166
External Interrupt Requests 41
F
Fast Context Saving 41
Firmware Instructions 137
Flash Program Memory 43
In-Circuit Serial Programming (ICSP) 43
Run-Time Self-Programming (RTSP) 43
Table Instruction Operation Summary 43
II/O Pin Specifications
Input. 153
Output 155
I/O Ports. 53
Parallel I/O (PIO) 53
$\mathrm{I}^{2} \mathrm{C}$. 95
I^{2} C 10-bit Slave Mode Operation 97
Reception 98
Transmission. 98
$I^{2} \mathrm{C}$ 7-bit Slave Mode Operation 97
Reception 97
Transmission 97
${ }^{2}$ ² Master Mode 100
Clock Arbitration 100
Multi-Master Communication, Bus Collision and Bus Arbitration. 100
Reception 100
Transmission 100
I^{2} C Module
Addresses. 97
Bus Data Timing Characteristics Master Mode. 178
Slave Mode 180
Bus Data Timing Requirements Master Mode. 179
Slave Mode 181
Bus Start/Stop Bits Timing Characteristics Master Mode. 178
Slave Mode 180
General Call Address Support 99
Interrupts 99
IPMI Support 99
Master Operation 99
Master Support 99
Operating Function Description 95
Operation During CPU Sleep and Idle Modes 101
Pin Configuration 95
Programmer's Model 95
Register Map 102
Registers 95
Slope Control 99
Software Controlled Clock Stretching (STREN = 1) 99
Various Modes
Idle Current (lidLE) 152
In-Circuit Serial Programming (ICSP) 123
ndependent PWM Output 87
Initialization Condition for RCON Register Case 1 132
Initialization Condition for RCON Register Case 2 132
Initialization Condition for RCON Register, Case 1 132
Input Capture (CAPx) Timing Characteristics 168
Input Capture Interrupts 69
Register Map 70
Input Capture Module 67
In CPU Sleep Mode. 69
Simple Capture Event Mode 68
Input Capture Timing Requirements 168
Input Change Notification Module 54
Register Map (bits 15-0) 55
nput Characteristics
QEA/QEB 171
Instruction Addressing Modes 31
File Register Instructions 31
Fundamental Modes Supported 31
MAC Instructions 32
MCU Instructions 32
Move and Accumulator Instructions 32
Other Instructions 32
Instruction Set 137
Inter-Integrated Circuit. See $I^{2} \mathrm{C}$
Internal Clock Timing Examples 160
Internet Address 199

dsPIC30F2010

Interrupt Controller
Register Map. 42
Interrupt Priority 38
Traps 39
Interrupt Sequence 41
Interrupt Stack Frame 41
Interrupts 37
L
Load Conditions 157
M
Memory Organization. 19
Microchip Internet Web Site 199
Modulo Addressing 33
Applicability 35
Operation Example 34
Start and End Address 33
W Address Register Selection 33
Motor Control PWM Module 81
Fault Timing Characteristics 170
Timing Characteristics 170
Timing Requirements 170
MPLAB ASM30 Assembler, Linker, Librarian 146
MPLAB ICD 2 In-Circuit Debugger 147
MPLAB ICE 2000 High-Performance Universal
In-Circuit Emulator 147
MPLAB ICE 4000 High-Performance Universal
In-Circuit Emulator 147
MPLAB Integrated Development Environment Software 145
MPLAB PM3 Device Programmer 147
MPLINK Object Linker/MPLIB Object Librarian 146
0
OC/PWM Module Timing Characteristics 169
Operating Current (IDD) 151
Operating MIPS vs Voltage dsPIC30F2010 149
Oscillator
Configurations
Fast RC (FRC) 127
Low Power RC (LPRC) 127
Phase Locked Loop (PLL) 127
Oscillator Configurations 126
Fail-Safe Clock Monitor 128
Initial Clock Source Selection 126
LP Oscillator Control 127
Start-up Timer (OST) 126
Oscillator Operating Modes Table 124
Oscillator Selection 123
Oscillator Start-up Timer
Timing Characteristics 162
Timing Requirements 163
Output Compare Interrupts 73
Output Compare Mode Register Map 74
Output Compare Module 71
Timing Characteristics 168
Timing Requirements 168
Output Compare Operation During CPU Idle Mode. 73
Output Compare Sleep Mode Operation 73
P
Packaging Information 187
Marking 187
PICSTART Plus Development Programmer 148
Pinout Descriptions 7
PLL Clock Timing Specifications 159
POR. See Power-on Reset
Port Register Map 55
Port Write/Read Example 54
PORTB
Register Map 55
PORTC
Register Map 55
PORTD
Register Map 55
PORTE Register Map 55
PORTF
Register Map 55
Position Measurement Mode 77
Power-Down Current (IPD) 153
Power-on Reset (POR) 123
Oscillator Start-up Timer (OST) 123
Power-up Timer (PWRT) 123
Power-Saving Modes 133
Idle. 134
Sleep 133
Power-Saving Modes (Sleep and Idle) 123
Power-up Timer
Timing Characteristics 162
Timing Requirements 163
Product Identification System 201
Program Address Space. 19
Construction 20
Data Access from Program Memory Using Table Instructions 21
Data Access From, Address Generation 20
Memory Map. 19
Table Instructions
TBLRDH 21
TBLRDL 21
TBLWTH 21
TBLWTL 21
Program and EEPROM Characteristics. 156
Program Counter 10
Program Data Table Access 22
Program Space Visibility
Window into Program Space Operation 23
Programmable 123
Programmable Digital Noise Filters 77
Programmer's Mode 10
Diagram 11
Programming Operations 45
Algorithm for Program Flash 45
Erasing a Row of Program Memory 45
Initiating the Programming Sequence 46
Loading Write Latches. 46
Programming, Device Instructions 137
Protection Against Accidental Writes to OSCCON 128

dsPIC30F2010

PWM
Register Map 90
PWM Duty Cycle Comparison Units 85
Duty Cycle Register Buffers 86
PWM FLTA Pins 88
Enable Bits 88
Fault States 88
Modes 88
Cycle-by-Cycle 88
Latched 88
PWM Operation During CPU Idle Mode 89
PWM Operation During CPU Sleep Mode 89
PWM Output and Polarity Control 88
Output Pin Control 88
PWM Output Override 87
Complementary Output Mode 87
Synchronization 87
PWM Period 84
PWM Special Event Trigger 89
Postscaler 89
PWM Time Base 83
Continuous Up/Down Counting Modes 83
Double Update Mode 84
Free Running Mode 83
Postscaler 84
Prescaler 84
Single-Shot Mode 83
PWM Update Lockout 88
Q
QEA/QEB Input Characteristics 171
QEI Module
External Clock Timing Requirements 167
Index Pulse Timing Characteristics 172
Index Pulse Timing Requirements 172
Operation During CPU Idle Mode 78
Operation During CPU Sleep Mode 77
Register Map. 79
Timer Operation During CPU Idle Mode 78
Timer Operation During CPU Sleep Mode 77
Quadrature Decoder Timing Requirements 171
Quadrature Encoder Interface (QEI) Module 75
Quadrature Encoder Interface Interrupts 78
Quadrature Encoder Interface Logic 76
R
Reader Response 200
Reset 123, 129
Reset Sequence 39
Reset Sources 39
Reset Timing Characteristics 162
Reset Timing Requirements 163
Resets
BOR, Programmable. 131
POR 129
Operating without FSCM and PWRT 131
POR with Long Crystal Start-up Time 131
RTSP Operation 44

S

Sales and Support 201
Serial Peripheral Interface. See SP
Simple Capture Event Mode
Capture Buffer Operation 68
Capture Prescaler. 68
Hall Sensor Mode 68
Input Capture in CPU Idle Mode 69
Timer2 and Timer3 Selection Mode 68
Simple OC/PWM Mode Timing Requirements 169
Simple Output Compare Match Mode 72
Simple PWM Mode 72
Input Pin Fault Protection 72
Period 73
Single Pulse PWM Operation 87
Software Simulator (MPLAB SIM) 146
Software Stack Pointer, Frame Pointer 10
CALL Stack Frame 27
SPI 91
SPI Mode
Slave Select Synchronization 93
SPI1 Register Map 94
SPI Module 91
Framed SPI Support 91
Operating Function Description 91
SDOx Disable 91
Timing Characteristics
Master Mode (CKE = 0) 173
Master Mode (CKE = 1) 174
Slave Mode (CKE = 1) 175, 176
Timing Requirements
Master Mode $(\mathrm{CKE}=0)$ 173
Master Mode (CKE = 1) 174
Slave Mode (CKE = 0) 175
Slave Mode (CKE = 1) 177
Word and Byte Communication. 91
SPI Operation During CPU Idle Mode 93
SPI Operation During CPU Sleep Mode 93
STATUS Register 10
Subtracter 15
Data Space Write Saturation 17
Overflow and Saturation 15
Round Logic 16
Write Back 16
Symbols used in Opcode Descriptions 138
System Integration 123
Overview 123
Register Map 135
TTemperature and Voltage Specifications
AC157
DC 149
Timer1 Module 57
16-bit Asynchronous Counter Mode 57
16-bit Synchronous Counter Mode 57
16-bit Timer Mode 57
Gate Operation 58
Interrupt 59
Operation During Sleep Mode 58
Prescaler 58
Real-Time Clock 59
RTC Interrupts 59
RTC Oscillator Operation 59
Register Map 60

dsPIC30F2010

Timer2 and Timer3 Selection Mode 72
Timer2/3 Module 61
32-bit Synchronous Counter Mode 61
32-bit Timer Mode 61
ADC Event Trigger 64
Gate Operation 64
Interrupt. 64
Operation During Sleep Mode 64
Register Map. 65
Timer Prescaler 64
TimerQ (QEI Module) External Clock Timing Characteristics 167
Timing Characteristics
A/D Conversion
10-Bit High-speed (CHPS $=01$, SIMSAM $=0$ASAM $=0, \mathrm{SSRC}=000$) 18410-bit High-speed (CHPS $=01, \operatorname{SIMSAM}=0$,ASAM $=1, S S R C=111, S A M C=00001) 185$
Band Gap Start-up Time 164
CLKO and I/O 161
External Clock 157
$I^{2} \mathrm{C}$ Bus Data
Master Mode 178
Slave Mode 180
${ }^{2}$ C Bus Start/Stop Bits
Master Mode 178
Slave Mode 180
Input Capture (CAPx) 168
Motor Control PWM Module 170
Motor Control PWM Module Falult. 170
OC/PWM Module 169
Oscillator Start-up Timer 162
Output Compare Module 168
Power-up Timer 162
QEI Module Index Pulse 172
Reset. 162
SPI Module
Master Mode (CKE = 0) 173
Master Mode (CKE = 1) 174
Slave Mode (CKE = 0) 175
Slave Mode (CKE = 1) 176
TimerQ (QEI Module) External Clock 167
Type A and B Timer External Clock 165
Watchdog Timer 162
Timing Diagrams
Center-Aligned PWM 85
Dead-Time 87
Edge-Aligned PWM 85
PWM Output 73
Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1 130
Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2 130
Time-out Sequence on Power-up (MCLR Tied to VDD) 130
Timing Diagrams and Specifications
DC Characteristics - Internal RC Accuracy 160
Timing Diagrams.See Timing Characteristics
Timing Requirements
A/D Conversion
High-speed 186
Band Gap Start-up Time 164
Brown-out Reset 163
CLKO and I/O 161
External Clock 158
$I^{2} \mathrm{C}$ Bus Data (Master Mode) 179
$I^{2} \mathrm{C}$ Bus Data (Slave Mode) 181
Input Capture 168
Motor Control PWM Module 170
Oscillator Start-up Timer 163
Output Compare Module 168
Power-up Timer 163
QEI Module
External Clock 167
Index Pulse. 172
Quadrature Decoder. 171
Reset 163
Simple OC/PWM Mode 169
SPI Module
Master Mode $($ CKE $=0)$ 173
Master Mode (CKE = 1) 174
Slave Mode (CKE = 0) 175
Slave Mode (CKE = 1) 177
Type A Timer External Clock 165
Type B Timer External Clock 166
Type C Timer External Clock 166
Watchdog Timer 163
Timing Specifications PLL Clock 159
U
UART
Address Detect Mode 107
Auto Baud Support 107
Baud Rate Generator 107
Enabling and Setting Up UART 105
Alternate I/O 105
Disabling 105
Enabling 105
Setting Up Data, Parity and Stop Bit Selections 105
Loopback Mode 107
Module Overview 103
Operation During CPU Sleep and Idle Modes 108
Receiving Data 106
In 8-bit or 9-bit Data Mode 106
Interrupt 106
Receive Buffer (UxRXB) 106
Reception Error Handling 106
Framing Error (FERR) 107
Idle Status 107
Parity Error (PERR) 107
Receive Break 107
Receive Buffer Overrun Error (OERR Bit) 106
Transmitting Data 105
In 8-bit Data Mod 105
In 9-bit Data Mode 105
Interrupt 106
Transmit Buffer (UxTXB) 105
UART1 Register Map 109
Unit ID Locations 123
Universal Asynchronous Receiver Transmitter. See UART.

dsPIC30F2010

W
Wake-up from Sleep 123
Wake-up from Sleep and Idle 41
Watchdog Timer
Timing Characteristics 162
Timing Requirements 163
Watchdog Timer (WDT) 123, 133
Enabling and Disabling 133
Operation 133
WWW Address 199
WWW, On-Line Support 4

dsPIC30F2010

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support - Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.
To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.
Technical support is available through the web site at: http://support.microchip.com

dsPIC30F2010

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

2. How does this document meet your hardware and software development needs?
\qquad
3. Do you find the organization of this document easy to follow? If not, why?
\qquad
4. What additions to the document do you think would enhance the structure and subject?
\qquad
5. What deletions from the document could be made without affecting the overall usefulness?
\qquad
6. Is there any incorrect or misleading information (what and where)?
\qquad
\qquad
7. How would you improve this document?
\qquad
\qquad

dsPIC30F2010

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta

Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles

Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto

Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Habour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Gumi

Tel: 82-54-473-4301
Fax: 82-54-473-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
1.0 Device Overview 5
2.0 CPU Architecture Overview. 9
3.0 Memory Organization 19
4.0 Address Generator Units 31
5.0 Interrupts 37
6.0 Flash Program Memory 43
7.0 Data EEPROM Memory 49
8.0 I/O Ports 53
9.0 Timer1 Module 57
10.0 Timer2/3 Module 61
11.0 Input Capture Module 67
12.0 Output Compare Module 71
13.0 Quadrature Encoder Interface (QEI) Module 75
14.0 Motor Control PWM Module 81
15.0 SPI Module 91
16.0 I2C Module 95
17.0 Universal Asynchronous Receiver Transmitter (UART) Module 103
18.0 10-bit High-Speed Analog-to-Digital Converter (ADC) Module 111
19.0 System Integration 123
20.0 Instruction Set Summary 137
21.0 Development Support. 145
22.0 Electrical Characteristics 149
23.0 Packaging Information. 187
The Microchip Web Site 199
Customer Change Notification Service 199
Customer Support 199
Reader Response 200
Product Identification System 201

[^0]: Note: Program Space Visibility cannot be used to access bits $<23: 16>$ of a word in program memory.

[^1]: TABLE 8-2: INPUT CHANGE NOTIFICATION REGISTER MAP (BITS 15-0)

 | SFR Name | Addr. | Bit 15 | it 14 | Bit 13 | it 12 | Bit 11 | it 10 | it 9 | it 8 | it 7 | 16 | Bit 5 | Bit 4 | t | 2 | Bit 1 | it 0 | | Reset State |
 | :---: |
 | CNEN1 | 00C0 | CN15IE | CN14IE | CN131E | CN12IE | CN11IE | CN10IE | CN9IE | CN8IE | CN7IE | CN6IE | CN5IE | CN4IE | CN3IE | CN2IE | CN1IE | CNOIE | 0000 | 00000000000 |
 | CNEN2 | 00 C 2 | - | - | - | - | - | - | - | - | - | - | CN21IE | CN201E | CN19IE | CN181E | CN17IE | CN16IE | 0000 | 00000000 |
 | CNPU1 | 00 C 4 | CN15PUE | CN14PUE | CN13PUE | CN12PUE | CN11PUE | CN10PUE | CN9PUE | CN8PUE | CN7PUE | CN6PUE | CN5PUE | CN4PUE | CN3PUE | CN2PUE | CNIPUE | CNOPUE | 0000 | 00000000 |
 | CNPU2 | 00 C | - | - | - | | | | | | | | CN21PUE | CN2OPUE | CN19PUE | CN18PUE | CN17PUE | CN16PUE | 0000 | 000000000000 |

 Legend: $u=u n i n i t i a l i z e d ~ b i t ~$
 Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

[^2]: Note: Both the transmit buffer (SPIxTXB) and the receive buffer (SPIxRXB) are mapped to the same register address, SPIxBUF.

